
A SYSTEMATIC APPROACH TO PRIORITIZE VULNERABILITIES IN IOT
DEPLOYMENTS

A Dissertation
Presented to

The Academic Faculty

By

Omar Alrawi

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Engineering

Department of Electric and Computer Engineering

Georgia Institute of Technology

May 2023

© Omar Alrawi 2023

A SYSTEMATIC APPROACH TO PRIORITIZE VULNERABILITIES IN IOT
DEPLOYMENTS

Thesis committee:

Dr. Emmanouil K. Antonakakis
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Fabian Monrose
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Douglas Blough
Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Dr. Roberto Perdisci
Computer Science
University of Georgia

Dr. Michael Bailey
School of Cybersecurity and Privacy
Georgia Institute of Technology

Date approved: April 18, 2023

ACKNOWLEDGMENTS

First and foremost, I would like to express my profound gratitude to the Almighty for

bestowing upon me knowledge and wisdom like that of Prophet David and Solomon, as

mentioned in the Quran, chapter 27, verse 15: “And We had certainly given to David and

Solomon knowledge, and they said, ‘Praise [is due] to Allah, who has favored us over many

of His believing servants’.” I want to thank the Ph.D. committee, whose mentorship, sup-

port, and constructive feedback have been instrumental in shaping my research and refining

my dissertation. I am grateful for their thoroughness during my defense and for setting high

expectations to push me to my full potential. I am deeply grateful to my advisor, Profes-

sor Manos Antonakakis, who has been my number-one fan throughout this journey. Your

unwavering faith in me and your constant encouragement provided the impetus I needed to

persevere through the challenges of completing my Ph.D.

I am indebted to Professor David Mohaisen, who introduced me to research, mentored

me, and convinced me to pursue a Ph.D. As a close friend, I have admired your unmatched

productivity. I aspire to attain the level of brilliance and dedication that you embody. A

heartfelt acknowledgment goes out to Professor Brendan Saltaformaggio, a close friend

and mentor. I am very grateful for your willingness to guide me through the intricacies of

research and academia. Your generosity in sharing resources, time, and friendship has been

a true gift. I owe a special gratitude to Professor Fabian Monrose, who opened my eyes to

what it truly means to be a scientist. Your rigorous approach, wisdom, and experience have

shaped me as a researcher. I have genuinely enjoyed every moment spent working with you

and receiving your invaluable feedback.

To my fellow lab mates, Chaz, Gong, Kevin V, Panos, Rosa, Thanos1, Thanos2, Thomas,

Yizheng, and Zane, thank you for your support and camaraderie. A special thanks to Chaz,

whose mentorship has been invaluable throughout my journey. I am grateful to the numer-

ous outside collaborators from industry and other academic institutions. Your partnership

iii

has been an essential part of my growth and success.

I would also like to express my heartfelt gratitude to my loving mom, sisters, and in-

laws, who have been my pillar of strength during these years. Your sacrifices and love

allowed me to concentrate on my studies. My sincere appreciation extends to your un-

derstanding and support. To my incredible wife, Shireen, and our lovely children, Bayan,

Bekr, Belal, and Badr, thank you for your unwavering support, love, and understanding.

Your love and patience have sustained me during the most challenging times to achieve

this milestone. Thank you, my precious Bayan, for smiling at me from the front-row seat

during my first paper presentation and melting my stage fright away. Finally, I am thankful

to everyone who has contributed to my journey in big and small ways. This dissertation is

not only a testament to my efforts but also a reflection of the collective efforts of those who

have touched my life throughout this incredible experience.

Thank you all!

iv

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . xi

List of Figures . xiv

List of Acronyms . xvi

Summary . xvii

Chapter 1: Introduction . 1

1.1 Thesis and Contributions . 1

1.1.1 Thesis Statement . 1

1.1.2 Contributions . 2

1.1.3 Security Evaluation of Home-based Internet of Things (IoT) De-
ployments . 3

1.1.4 A Longitudinal Security Measurement of Home-based IoT Devices 3

1.1.5 A Large-Scale Analysis of The IoT Malware Lifecycle 4

1.2 Dissertation Organization . 4

Chapter 2: Foundational Work . 8

2.1 IoT Security Evaluation . 8

v

2.1.1 Device . 9

2.1.2 Mobile Application . 14

2.1.3 Cloud Endpoint . 16

2.1.4 Communication . 20

2.2 Malware Analysis . 24

2.2.1 Infection Stage . 25

2.2.2 Payload Stage . 27

2.2.3 Persistence Stage . 28

2.2.4 Capability Stage . 29

2.2.5 Command & Control Stage . 30

2.3 Related Work . 32

2.3.1 IoT Security Evaluation . 32

2.3.2 IoT Malware Analysis . 32

Chapter 3: Security Evaluation of Home-based IoT Deployments 34

3.0.1 Security Properties . 35

3.0.2 Evaluation Scope and Attack Model 36

3.1 Security Evaluation Methodology . 36

3.1.1 Testbed . 36

3.1.2 Evaluation Procedures . 45

3.2 Results . 47

3.2.1 Device . 47

3.2.2 Mobile . 48

vi

3.2.3 Cloud . 49

3.2.4 Network . 50

3.3 Evaluation Cases . 51

3.3.1 Good: Withings Home . 51

3.3.2 Satisfactory: Nest Cam . 52

3.3.3 Needs Improvement: MiCasa Verde VeraLite 52

3.4 An Integrated Security Evaluation . 53

3.4.1 Device . 54

3.4.2 Mobile App . 54

3.4.3 Cloud Endpoints . 55

3.4.4 Network Communication . 55

3.4.5 Attack Paths . 56

3.5 Proposals . 57

3.5.1 Mitigations . 57

3.5.2 Stakeholders . 59

3.5.3 Recommendations . 60

Chapter 4: Longitudinal Analysis . 66

4.1 Background . 66

4.1.1 Longitudinal Studies of IoT Deployments 66

4.1.2 Goals . 67

4.1.3 Evaluation Scope . 67

4.2 Methodology . 68

vii

4.2.1 Devices . 68

4.2.2 Data Collection and Analysis . 69

4.2.3 Challenges and Limitations . 72

4.3 Results . 73

4.3.1 Study One: The Impact of Updates on Security Posture 73

4.3.2 Study Two: A Longitudinal Analysis of Devices’ Security Lifecycle 78

4.4 Iterative Security Evaluation . 83

Chapter 5: Large-Scale Analysis of the IoT Malware Lifecycle 85

5.1 Challenges and Limitations . 85

5.2 Methodology . 86

5.2.1 Data Sources . 87

5.2.2 Analysis Methods . 90

5.3 Results . 94

5.3.1 Detection and Labeling . 95

5.3.2 Infection Analysis . 97

5.3.3 Payload Analysis . 99

5.3.4 Persistence Analysis . 99

5.3.5 Capability Analysis . 101

5.3.6 C&C Analysis . 102

5.4 Case Studies . 104

5.4.1 Code Reuse and Evolution . 104

5.4.2 Payload Hosting . 106

viii

5.5 Discussion . 108

5.5.1 Similarities and Differences . 108

5.5.2 Stakeholders and Defenses . 110

5.6 Using Threat Analysis to Inform Risk Assessment 111

5.6.1 Targeted Devices In The Testbed 112

Chapter 6: Risk Assessment Framework for IoT Deployments 113

6.1 An Informed Risk Assessment Model . 113

6.2 Risk Assessment Framework . 114

6.2.1 Overview and Terminology . 114

6.2.2 Threat Model and Attacker Types 116

6.3 Risk Model . 118

6.3.1 Base Risk Score . 118

6.3.2 Risk Score Adjustment: Exposure 119

6.3.3 Risk Score Adjustment: Threats 120

6.3.4 Risk Assessment Example . 121

6.4 Case Study . 123

6.4.1 Multiple Devices, One Vendor . 123

6.4.2 Incorporating Exposure and Attack Weights 124

Chapter 7: Conclusion . 127

7.1 Risk Assessment and Empirical Data . 127

7.1.1 Understanding Attacks and Abuse on IoT Deployments 128

7.1.2 A Longitudinal Security Evaluation of IoT Cloud Backends 129

ix

7.1.3 Understanding Attacks on The IoT Software Supply Chain 129

7.1.4 An Automated and Iterative Security Evaluation Framework for LE
IoT Protocols . 130

7.2 Broader Impact of Empirical Studies . 131

7.2.1 Security Evaluation of Home-based IoT Deployments 131

7.2.2 Large-Scale Analysis of the IoT Malware Lifecycle 134

7.3 Closing Remarks . 135

References . 136

x

LIST OF TABLES

2.1 Systematization of the IoT literature. Each section corresponds to a compo-
nent of IoT deployment across attack vectors, mitigations, and stakehold-
ers. The ✓implies the category of attack, mitigation, or stakeholder applies
to the discussed literature. 10

2.2 A summary of the proposed comparative framework and definitions for
each component. 26

2.3 A comparison between desktop, mobile, and IoT malware using the pro-
posed framework. 27

3.1 A summary of the efforts required for the testbed components and evalua-
tion stages. 37

3.2 An overview of the devices used in the evaluation. 38

3.3 This table is a summary of each evaluated device per graph component
in Figure 3.2. The device section summarizes the number of running ser-
vices and issues found. The mobile application summarizes excessive per-
missions, sensitive data, or incorrectly use of cryptographic protocols. The
communication category summarizes the susceptibility to MITM attack and
the communication channel state as fully encrypted (), partially encrypted
(G#), or not encrypted (#). 61

3.4 Device Evaluation. 62

3.5 List of devices and their CVEs with CVSS score of Critical and High. . . . 63

3.6 Mobile Application Evaluation. 63

3.7 Cloud Endpoint Evaluation. 64

3.8 Communication Evaluation. ✓+ (TLS/SSL) — ✓- (3rd-party recursive DNS) 65

xi

4.1 Device evaluation based on an initial evaluation, baseline evaluation, and
update evaluation. Red cells show an increase for services and issues and
green cells show a decrease in services and issues. 71

4.2 Summary of device use of encryption (#- None, G#- partial, - full), issues
found in SSL/TLS protocol, and vulnerabilities affecting services. Green
shows improvement, red shows decline, and yellow shows improvement
but poor encryption. 73

4.3 A summary of issues for baseline evaluation. Green rows show fixed issues
by updates. 75

5.1 A summary of documented or publicly available IoT Malware analysis plat-
forms. ✗ indicates resource no longer available. 87

5.2 The data sources used for the empirical study. 89

5.3 A statistical summary of the dataset, metadata, static, and dynamic analysis
grouped by IoT malware’s target architecture. 94

5.4 Top anti-virus (AV) labels based on reports from VirusTotal. 94

5.5 Device categories and their top vulnerabilities that are targeted by IoT mal-
ware based on data from Bad Packets. 97

5.6 Top exploits found in IoT malware binaries based on static analysis. 97

5.7 Scanning methods found in IoT malware binaries based on dynamic analysis.101

5.8 DDoS capabilities found in IoT malware binaries based on static analysis
and leaked source code. 102

5.9 Top IoT malware clusters grouped by AV Labels. 103

6.1 Example of point assignment for the VeraLite device 122

6.2 A summary of assigned weights to exposure and attack variables 123

6.3 The risk scores for the Belkin WeMo Devices. 124

6.4 The base risk score and temporal and threat weighed risk score for four
devices. 125

xii

7.1 Citation sources by societies. 132

7.2 A sample of 15 academic research projects using the YourThings dataset. . 133

xiii

LIST OF FIGURES

2.1 Typical home-based IoT setup. 13

3.1 Single IoT deployment. 34

3.2 IoT graph model. 34

3.3 An overview of the lab architecture. 39

4.1 Summary of critical Common Vulnerability Scoring System (CVSS) vul-
nerabilities found in testbed. 78

4.2 Summary of high CVSS vulnerabilities found in testbed. 79

4.3 Summary of medium CVSS vulnerabilities found in testbed. 81

4.4 Summary of low CVSS vulnerabilities found in testbed. 83

5.1 The daily volume of files and detected files submitted to VirusTotal in 2019
per platform. 89

5.2 An overview of the static and dynamic analysis pipeline. 90

5.3 The number of AV engines that detect IoT malware per architecture. The
dotted vertical line marks five AVs. 95

5.4 A timeline of exploits for Mirai variants based on reports from security
researchers. 96

5.5 DNS measurement of domains for the top IoT malware family clusters
based on the pDNS dataset. 104

5.6 Mirai’s faulty evasion code (top) and the fixed code found in newer variants
(bottom). 106

xiv

6.1 The main components of IoT deployment and their security properties. . . . 114

xv

LIST OF ACRONYMS

C&C Command and Control

CDN Content Delivery Network

COTS commercial off-the-shelf

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

EOL End-of-Life

ICS Industrial Control System

IoT Internet of Things

ISPs Internet Service Providers

LAN Local Area Network

MITM Man-in-the-Middle

NAT Network Address Translation

NIST National Institute of Standards and Technology

OS Operating System

UPnP Universal Plug and Play

VLAN Virtual Local Area Network

xvi

SUMMARY

Practitioners must use an informed approach that prioritizes security measures based

on risk and cost to improve the security of deployed Internet of Things (IoT). For several

reasons, improving the overall security of IoT is essential. First, IoT devices are widely

used in various sectors, such as healthcare, transportation, and finance, and often handle

sensitive data, making them a prime target for cybercriminals. Second, many IoT devices

have limited computing resources, making it challenging to implement robust security mea-

sures. This limitation can expose IoT devices to several vulnerabilities, making them easier

targets for malicious attacks. Third, many IoT devices are interconnected and communi-

cate with each other, increasing the attack surface for cybercriminals. An attack on one

IoT device could compromise the entire network, causing significant harm to the system

and its users. Therefore, improving the overall security of IoT deployments is crucial to

ensure data privacy, protect against cyberattacks, and maintain the integrity and availability

of critical services.

To do so, practitioners require an approach to assess the security of IoT deployments

comprehensively, standardize the security assessment across diverse devices, and prioritize

security measures for high-risk devices. A comprehensive security evaluation can identify

the most significant security threats and vulnerabilities in IoT deployments. This will help

practitioners focus on the most critical areas that require the highest priority. Standardizing

security assessment will help reduce costs associated with customizing security evaluation

for each device and make it easier to compare security across diverse devices. Finally,

prioritizing security measures provides a more strategic approach to protecting high-risk

devices vulnerable to cyberattacks. Toward improving overall security, this dissertation

contributes a systematic and replicable approach that better prioritizes vulnerabilities in

IoT deployments.

xvii

CHAPTER 1

INTRODUCTION

Insecure IoT deployments can cause severe operational issues for critical internet infras-

tructure, including downtime, data breaches, network congestion, malware propagation,

and control system manipulation [1]. Understanding the risk of deploying IoT systems

is complex. For example, operators must enumerate their assets, identify vulnerabilities,

correlate cyber threats that target these vulnerabilities, and prioritize their resources to pro-

tect the most critical IoT deployments. More problematic, IoT deployments often consist

of legacy and newer devices, which can be challenging to secure. Legacy devices may

not have the latest security features and may be more vulnerable to modern threats. Fur-

thermore, patching legacy devices may be difficult or more costly than replacing them.

Many IoT deployments are dynamic and evolve in various aspects through updates, end-

of-lifecycle, and changes to their network infrastructure and topology. These changes can

cause them to be misconfigured and vulnerable to cyber threats. These compounding com-

plexities overwhelm operators, and it becomes difficult to prioritize what IoT deployments

security issues should be addressed quickly. Therefore, assessing the risk of IoT deploy-

ments is essential to prioritizing security measures and involves comprehensive, iterative,

and large-scale efforts.

1.1 Thesis and Contributions

1.1.1 Thesis Statement

A comprehensive and iterative vulnerability and threat analysis of IoT deployments im-

proves risk assessment models for prioritizing security measures.

1

1.1.2 Contributions

Prior to my work, risk assessments for IoT deployments focused on custom security evalua-

tions, lacked iteration, and did not consider internet threats. Prior approaches paint a partial

picture of the potentially exploitable security issues that exist in IoT deployments leaving

gaps in the overall risk assessment. This is far from sufficient, as the modern internet threats

evolve and the pace of new IoT applications are rapidly growing while custom security as-

sessment techniques cannot keep up. For example, an IoT vacuum cleaner and a home

assistant device may use an embedded Linux operating system, but the software services

on the devices will be different. A smart vacuum may expose a web server that accepts

commands locally from a mobile application to initiate cleaning tasks, while a voice assis-

tant may accept commands from several remote cloud endpoints to service requests from

users: each requiring a customized security evaluation approach for the different type of

software services and deployment. In addition, as the devices age and their threats evolve,

the device risk levels change over time. There have been several large-scale studies that ap-

ply theoretical-based approaches to simulate these complexities, but they do not accurately

represent real-world IoT deployments.

My research aims to break from traditional approaches and instead develop a systematic

and replicable approach based on end-host binary program analysis and network vulnera-

bility analysis for real-world IoT deployments. In this dissertation, I present three studies

that combine binary program analysis and network vulnerability analysis to investigate the

fundamental security problems that contribute to high-risk IoT deployments. Specifically,

this body of work is built upon systematic methodologies that allow others to reproduce,

verify, and extend. The overall goal of this dissertation is to combine real-world security

evaluation observations and malware threat analysis to quantify the risk and prioritize se-

curity measures for IoT deployments. Below, I will briefly introduce these studies and their

contributions.

2

1.1.3 Security Evaluation of Home-based IoT Deployments

This work proposes a component-based security evaluation framework that provides a com-

prehensive and standardized assessment method for IoT deployments. The framework de-

composes complex IoT deployments into manageable core components and uncovers the

breadth of the attack surface. Leveraging this framework, we build a test bed of 45 diverse

home-based IoT devices and assess their security properties for device services, cloud ser-

vices, companion mobile applications, and network protocols. We limit the assessment

scope to home-based IoT devices because they are readily available and the experimental

setup can be reproduced. The results show an IoT deployment can have multiple com-

ponents, each with vulnerabilities. By systematically combining end-host binary program

analysis and vulnerability analysis, we discover that certain device types or vendors can

have disproportionate vulnerabilities affecting specific components. Holistically studying

these vulnerabilities is essential to understand the potential risks associated with an IoT

deployment.

1.1.4 A Longitudinal Security Measurement of Home-based IoT Devices

A systematic security evaluation must consider the temporal component of an IoT deploy-

ment by incorporating an iterative approach that can account for vulnerability changes over

time. In this study, we conduct 13-month longitudinal assessments to understand how se-

curity flaws evolve throughout the device’s lifecycle. The longitudinal component enables

a more comprehensive understanding of vulnerabilities as they arise and uncovers trends

that are otherwise impossible to observe. This study reinforces the replicable approach pro-

posed in the first work and contributes new findings. The results reveal additional vulner-

abilities missed in the initial one-time security evaluation. Moreover, the findings evaluate

the effectiveness of security patching for different device types and vendors. Lastly, the

results highlight groups of vulnerability types by severity and their persistence through-

out the lifecycle of an IoT device, which can inform the risk analysis and prioritization of

3

security measures.

1.1.5 A Large-Scale Analysis of The IoT Malware Lifecycle

Toward providing a more accurate risk assessment of IoT deployments, we study the mal-

ware threats that target vulnerable IoT deployments. In this work, we investigate attacks

on IoT systems at scale by empirically studying the lifecycle of IoT malware and com-

paring it with traditional malware that targets desktop and mobile platforms. We build an

extensible binary program analysis platform for six Linux-based system architectures and

characterize IoT malware infection tactics, their infection payloads, and their capabilities.

We leverage the binary analysis platform to carry out a large-scale measurement of more

than 166K Linux-based IoT malware samples collected over a year. The results contribute

new observations about the IoT malware lifecycle, including device targeting, persistence

techniques, abuse tactics, and Command and Control (C&C) communication operation.

Specifically, the results identify areas of an IoT deployment that may be particularly vul-

nerable to attacks. Furthermore, the results discover trends similar to the development of

traditional malware for desktop and mobile platforms, which inform the potential evolution

of future threats. These findings help more accurately characterize the threats targeting IoT

deployment and provide a more informed risk assessment. Lastly, we make our binary

analysis platform and the malware dataset publicly available for the research community to

encourage reproducibility and validation.

1.2 Dissertation Organization

The dissertation is organized as follows:

• Chapter 1 presents the challenges in risk assessment and security measure priori-

tization for IoT deployments. Next, the chapter briefly highlights the gaps in prior

works, which do not provide a holistic understanding of risks in IoT deployments. Fi-

nally, the chapter overviews the dissertation’s contribution and describes three works

4

that build upon one another to provide a better risk assessment and security measure

prioritization of IoT deployments. The chapter closes by providing an outline of the

dissertation.

• Chapter 2 provides the foundational work required to design and evaluate system-

atic and replicable methods for security evaluation and malware analysis of IoT de-

ployments. First, the chapter systematizes prior work in the security evaluation of

home-based IoT deployments. The findings guide the design and inception of a novel

security evaluation framework, which later chapters use. Next, the chapter system-

atizes malware lifecycle studies for traditional platforms like desktop and mobile.

The findings inform the design of a systematic and comparative lifecycle framework

tailored to modern IoT malware and encompass traditional malware threats.

• Chapter 3 uses the derived framework from the foundational chapter to evaluate a

large-scale and diverse testbed of home-based IoT devices. First, the chapter de-

scribes the security evaluation framework and its components. We formalize the

framework into a model that allows others to replicate and generalize to different IoT

deployments. Next, the chapter presents the testbed design and engineering efforts,

including their challenges. This includes the lab setup, evaluation tools, automation,

data collection, and analysis. Finally, we present the results and notable findings

that highlight the utility of our framework. Specifically, we provide three case stud-

ies based on our large-scale evaluation showcasing good, satisfactory, and poor IoT

deployments.

• Chapter 4 presents a temporal security evaluation using the framework from the

previous chapter to reinforce reproducibility and uncover new vulnerabilities as they

arise. Specifically, we evaluate the security of the device component from the home-

based IoT testbed. We describe our experimental setup and data collection using

the automated tools built by our first study. Finally, we present the results showing

5

changes in the vulnerabilities that impact IoT deployments and uncover insightful

observations about vendors, device types, and severity of vulnerabilities. We then

show how these findings impact the results from the initial security evaluation using

two case studies, which informs the risk modeling.

• Chapter 5 presents a large-scale study of the IoT malware lifecycle. Using the

framework derived in the foundational chapter, we empirically evaluate how IoT

malware infect, persist, abuse, and communicate on IoT devices. Next, we use the

findings to inform the risk of attackers targeting vulnerabilities found in IoT deploy-

ments. Moreover, we compare our findings with traditional malware and discuss the

future evolution of IoT malware, which helps prioritize security measures and more

accurately characterizes risk.

• Chapter 6 combines the empirical results and proposes a module, risk-scoring model.

We derive a simplified risk assessment approach based on the Common Vulnera-

bility Scoring System (CVSS) proposed by the National Institute of Standards and

Technology (NIST). However, unlike CVSS, the scoring methodology provides a

module risk score that incorporates the components, time, and threats targeting IoT

deployments. We demonstrate the risk assessment by presenting two case studies.

Both case studies empirically show a more accurate risk characterization than less

informed approaches. Together, the module scoring and holistic approach provide a

better prioritization of security measures.

• Chapter 7 summarizes the key findings from each study and lays out future work

for improving the overall risk analysis process. Specifically, we highlight additional

studies that would provide a more in-depth analysis of the security and threats in IoT

deployments. These studies include a longitudinal study into how attackers co-op

and abuse infected IoT deployments, a large-scale analysis of IoT cloud backends

availability and security, a comprehensive study of the third-party software supply-

6

chain used by IoT deployments, and toward automating the security evaluation of

low-energy network protocols found in IoT deployments. Beyond the risk assess-

ment, we highlight our work’s broader impact on the field.

7

CHAPTER 2

FOUNDATIONAL WORK

This chapter establishes the foundation of prior knowledge to which the dissertation will

contribute. Specifically, we present two systematizations. The first systematization ex-

amines the security evaluation literature for attacks and defenses against smart-home IoT

systems. The second systematization looks at malware threats for traditional platforms like

desktop and mobile to compare to IoT malware. Finally, we present a related work section

differentiating the contribution of this dissertation from prior efforts. The systematized

literature is chosen based on the following criteria:

• Merit: The work is unique and among the first to explore a given security predica-

ment.

• Scope: The work focuses on the security (offensive and defensive) of home-based

IoT systems or malware analysis.

• Impact: The work is regarded as significant based on the number of citations.

• Disruption: The work uncovers a new area the community is investigating.

2.1 IoT Security Evaluation

We noticed four broad categories of approaches as we surveyed the literature for security

evaluation of IoT deployments. These approaches include security assessment of IoT de-

vices through device services, cloud backends, companion mobile apps, and network com-

munication. Using the same differentiae, we organize the literature based on those four IoT

components: the device, the cloud backend, the companion mobile application, and the net-

work communication. This organization allows us to understand each component’s attack

8

techniques, proposed mitigations, and stakeholder responsibilities. Table 2.1 presents an

overview of the systematized work and their corresponding subsections where we discuss

the literature in detail. The component classification highlights the focus of the work while

the attack vectors, mitigations, and stakeholders identify the approach. The systematization

highlights representative work; hence it does not provide an all-encompassing reference to

every related work.

2.1.1 Device

Most of the home-based IoT research focuses on the device because the device component

is the cornerstone of an IoT deployment.

Attack Vector

Several works ([2, 3, 4, 5]) explored IoT device configuration insecurities. Barnes [2],

building on the findings of Clinton et al. [3], demonstrated how exposed hardware pins on

a device allowed him to gain privilege access and spy on the end-users. Insecure configura-

tions combined with weak or a lack of authentication can exacerbate the problem as shown

by Chapman [6] and Rodrigues [7]. Weak or a lack of authentication in running services is

a key contributor to several documented attacks [8, 9, 10, 11]. These attacks demonstrate

that device setup and configuration is an important process that the vendor must consider

and evaluate for security flaws. Vendors should enforce strict authentication policies and

for end-users to configure the device before allowing it to operate.

9

Table 2.1: Systematization of the IoT literature. Each section corresponds to a component
of IoT deployment across attack vectors, mitigations, and stakeholders. The ✓implies the
category of attack, mitigation, or stakeholder applies to the discussed literature.

Attack Vector Mitigations StakeholdersComponent Ref
Vuln. Services Weak Auth Default Config Patching Framework Vendor End User

Ur13 [4] ✓ ✓ ✓

Costi14 [12] ✓ ✓ ✓

Chapm14 [6] ✓ ✓ ✓ ✓

Kaval14 [11] ✓ ✓ ✓ ✓ ✓ ✓

Wuess15 [5] ✓ ✓ ✓

Rodri15 [7] ✓ ✓ ✓ ✓

Lodge16 [13] ✓ ✓ ✓

Ike16 [3] ✓ ✓ ✓

Franc16 [14] ✓ ✓ ✓

O’Fly16 [15] - - - - - - - - - - - - - -
Ferna16 [16] ✓ ✓ ✓

Max16 [8] ✓ ✓ ✓ ✓ ✓

FlowF16 [17] ✓ ✓ ✓ ✓ ✓

Oberm16 [10] ✓ ✓ ✓ ✓ ✓

Barne17 [2] ✓ ✓ ✓

Herna17[18] ✓ ✓ ✓

Morge17 [19] ✓ ✓ ✓

Ferna17 [20] ✓ ✓ ✓ ✓

Ronen17 [21] ✓ ✓ ✓

Dolph17 [22] ✓ ✓ ✓

Tian17 [9] ✓ ✓ ✓ ✓ ✓ ✓

D
ev

ic
e

su
bs

ec
tio

n
2.

1.
1

Wang18 [23] - - - - - - ✓ ✓

Permissions Programming Data Protection
Barre10 [24] ✓ ✓ ✓

Au12 [25] ✓ - - - - ✓ ✓

Egele13 [26] ✓ ✓ ✓ ✓

Vienn14 [27] ✓ ✓ - - - - - - - -
Max16 [8] ✓ ✓ ✓ ✓

Sivar16 [28] ✓ ✓ ✓ ✓ ✓

Demet17 [29] ✓ ✓ ✓ ✓

M
ob

ile
A

pp
lic

at
io

n
su

bs
ec

tio
n

2.
1.

2

IoTFu18 [30] ✓ - - - - ✓

Vuln. Services Weak Auth Encryption
Max16 [8] ✓ ✓ ✓ ✓

Oberm16 [10] ✓ ✓ ✓ ✓

Nandi16 [31] ✓ ✓ ✓

Blaic16 [32] ✓ ✓ ✓ ✓ ✓

Wilso17 [33] ✓ ✓ ✓ ✓

Surba17 [34] ✓ - - - - ✓ ✓

C
lo

ud
E

nd
po

in
t

su
bs

ec
tio

n
2.

1.
3

DTAP18 [35] ✓ ✓ ✓ ✓ ✓ ✓

Encryption MITM
BEAST11 [36] ✓ ✓ ✓

Garci11 [37] ✓ ✓ ✓ ✓ ✓

LUCKY13 [38] ✓ ✓ ✓

Ryan13 [39] ✓ ✓ - - - - - - - -
Foula13 [40] ✓ ✓ - - - - - - - -
Alfar13 [41] ✓ ✓ ✓

Selvi14 [42] ✓ ✓ ✓

POODL14 [43] ✓ ✓ ✓

FREAK15 [44] ✓ ✓ ✓

CRIME15 [45] ✓ ✓ ✓

SMACK15[46] ✓ ✓ ✓ ✓

Adria15 [47] ✓ ✓ ✓ ✓

Zilln15 [48] ✓ ✓ - - - - - - - -
DROWN16 [49] ✓ ✓ ✓ ✓

Jasek16 [50] ✓ ✓ ✓

Kinti16 [51] - - - - ✓ ✓

Aptho17 [52] ✓ ✓ ✓

C
om

m
un

ic
at

io
n

su
bs

ec
tio

n
2.

1.
4

Wood17 [53] ✓ ✓ ✓

Max [8] assessed the security of the August Smart Lock and found that weak authentica-

tion and insecure default configuration broke the security of the lock. He found hard-coded

credentials and debug configurations that allows modification and introspection of the lock.

The work of Obermaier et al. [10] on cloud-based cameras found that although the device

had what appeared to be a strong password (36 characters of alphanumeric and symbols),

the password was the MAC address of the camera reversed and Base64 encoded. Kavalaris

et al. [11] showed that the Sonos device runs undocumented and unauthenticated services

on high ports allowing LAN clients to fully control the device. The Sonos device was sus-

ceptible to unauthorized device pairing due to the lack of authentication. SmartAuth [9]

found that the authentication problem also manifests itself in the IoT application platforms

through over-privileged applications. Device pairing establishes a trusted channel between

a client and their device. Further, IoT hubs bridge LE devices to IP networks, which have

a pre-established trust relationship. An attacker would exploit this specific process to cir-

cumvent the device or use it as a pivot point.

IoT application platforms expose a permission-based model to allow third-party ap-

plications to run. Fernandes et al. [16, 17, 20] showed how implicit trust to third-party

applications can have major implications on the security of the device. There are many

subcomponents within the device’s platform, which can make securing the device difficult.

Many vendors have good practices in place to ensure secure authentication and secure de-

fault configurations (as demonstrated by O’Flynn [15]), but core device services can suffer

from side-channel information leakage. Ronen et al. [21] showed that although the Philips

Hue device was reasonably secure, they were able to extract the master encryption key

through a side-channel attack and combine it with a vulnerability found in the communica-

tion protocol, which resulted in a wormable exploit.

Flaws in firmware allow attackers to steal WiFi credentials [13], turn smart thermostats

into spy gadgets [18], ransom them [14], run arbitrary commands on smart TVs [19], and

control home assist devices covertly [22]. Costin et al. [12] conducted a large-scale study

11

on firmware analysis and found an array of flaws. The literature showed that device se-

curity requires defensive approaches to secure side-channel, firmware, and hardware. The

toolchain for software and hardware development has a well-defined secure development

process that vendors must utilize.

Mitigations

To address vulnerable services, misconfiguration, and weak authentication, vendors patch

through device updates, while inherent design flaws in IoT platforms are mitigated through

new frameworks. Wang et al. [23] proposed a provenance-based framework to aggregates

device activities across a deployment that can detect errors and malicious activities. Smar-

tAuth [9] is a framework that identifies required permissions for IoT applications running

on platforms like SmartThings and Apple Home. FlowFence [17] is a framework that splits

application codes into sensitive and non-sensitive modules and orchestrates the execution

through opaque handlers. This approach burdens developers because they must be mindful

of what code operates on sensitive and non-sensitive data. Furthermore, researchers can

adapt techniques found in mobile application frameworks to address IoT platform insecu-

rities.

Stakeholders

Table 2.1 shows that the main stakeholder is the vendor. Vendors are responsible for patch-

ing and updating vulnerable devices but can delegate some of the responsibilities to users

through configurations. For example, users can mitigate insecurities by disabling prob-

lematic services on the device. SmartAuth [9] provides a derived authentication approach

for applications on the device, but the implementation must be done by the vendor. Users

gain control by having a choice about what permissions to authorize for third-party appli-

cations. Kavalaris et al. [11] showed how services that the Sonos device exposes create

a security risk. Users can mitigate this risk through network segmentation, but it requires

12

Figure 2.1: Typical home-based IoT setup.

IoT Hub Mobile Apps Smart TVLE Devices

Cloud Endpoints

V
e
n
d

o
r

V
e
n
d

o
r/U

s
e
r

some technical expertise.

Not many devices allow users to fully configure running services or even disable them

unless they have privileged access. Based on all the proposed mitigations, end-users can

manage configuration or network segmentation residing on the home demarcation side as

shown in Figure 2.1. End-users do not have much control and often are given a minimalistic

interface, which limits the mitigation of vulnerable services. Vendors, on the other hand,

bear the responsibility for keeping the device up to date.

Take Away

The literature addresses some aspects of device security. Devices have many components

that contribute to their overall security like the platform permissions, unauthenticated ser-

vices, insecure configurations, and software and hardware bugs. Further, they are amplified

when combined. The device security is not purely in software, but vulnerabilities manifest

themselves in hardware and side-channels as well. Embedded Linux is found in many of the

devices, but there is no secure open IoT platform, which can incorporate newly proposed

frameworks [23, 17, 9] by the community.

System patching addresses most of the vulnerabilities. The patching process is not

perfect [18] and can be improved by good practices implemented in other areas of com-

puting [54]. The end-users have almost no control or visibility into the operation of the

13

device. Securely providing health telemetry and fine-grained configuration parameters can

empower users to mitigate immediate risks. Users can deploy the device in many ways that

go beyond the vendor’s permissive assumptions, hence vendors should assume the device

is Internet-facing when building security measures.

Similar problems are faced with general purpose computing systems that are publicly

accessible and running vulnerable services or using weak authentication (SSH with guess-

able password). Adapting techniques from secure platforms and operating systems will

improve the security posture of many IoT devices.

2.1.2 Mobile Application

Many of the home-based IoT devices have a companion mobile application to control,

configure, and interface with the device. Mobile applications can be leveraged as an attack

surface against IoT deployments.

Attack Vector

Acar et al. [55] identified five different areas of Android mobile application issues, namely

permission evolution, permission revolution, webification, programming-induced leakage,

and software distribution. We adapted Acar’s approach and identified three major classes

of insecurities that effect IoT devices: over-privilege (permissions [24, 25]), programming

errors (programming [26]), and hard-coded sensitive information (data protection [27]).

Max [8] showed how programming errors leak sensitive information about the device and

the cloud endpoint. Max used the sensitive information to dump credentials, escalate priv-

ileges, and circumvent the security of the August Smart Lock. Apart from Max’s work,

there are no direct attacks leveraging the mobile application to circumvent an IoT device.

Chen et al. [30] presented IoTFuzzer that instruments the mobile application within an

IoT deployment to find bugs on the IoT device. Chen’s approach is unique and leverages

the semantics that the vendor programmed into the application. Although there are no re-

14

ports of this technique used in the wild, theoretically an attacker can use the same approach

to escalate privilege on an IoT device. Sivaraman et al. [28] showed how a mobile appli-

cation can be used on a local network to collect information about available home devices

and then reconfigure the router/modem firewall rules to make the devices Internet facing.

Hanguard [29] showed how permissive security assumptions by vendors about the LAN

can expose an IoT device. Companion mobile applications are an entry point to the device

and vendors often assume that the deployment network is trusted and secure. These as-

sumptions can have grave effects on the security of the device especially when devices rely

on unauthenticated services or unencrypted communications.

Mitigation

Hanguard [29] proposed a user-space mobile application that interfaces with the router to

control access through role-based access control (RBAC). Hanguard’s approach will pre-

vent the attack discussed by Sivaraman et al. [28] but cannot stop attacks from a compro-

mised companion application. Securing the mobile application by adhering to best prac-

tices discussed in Pscout [25], Barrera et al. [24], Egele et al. [26], and Viennot et al. [27],

reduces the attack surface. Unfortunately, as Viennot et al. [27] showed, a large portion

of the applications in the Google Play Store contain issues relating to permissions, pro-

gramming errors, and information leakage. Mobile application platforms are mature and

have built-in security facilities to promote good practices. Developers and vendors should

adhere to best practices and audit their mobile applications periodically.

Stakeholders

The mobile application component relies on both the user and the vendor. This is partly due

to the permission model that most mobile platforms provide to end-users. Hanguard [29]

provides the user with a system to deploy inside the local network through routing rules

(user demarcation Figure 2.1), which does not involve the vendor. Sivaraman et al. [28]

15

proposes that users should be vigilant when running mobile applications on their networks

and only use authorized stores (Google Play, Apple App Store, etc.). The vendors must

address programming errors and secure information storage through updates. Vendors must

familiarize themselves with the mobile platforms to deploy secure applications or use a

reputable third-party developer to provide secure development expertise.

Take Away

The work of Acar et al. [55] showed the maturity of the mobile application security field.

An inherent trust is given to mobile applications, which in many cases control core com-

ponents of an IoT device or a cloud service. Max [8] and IoTFuzzer [30] demonstrated

how to abuse the implicit trust between mobile applications and IoT devices or cloud ser-

vices. IoT vendors and developers should adhere to platform development guidelines and

leverage security features to ensure proper deployments. Limiting mobile application ac-

cess to the device through fine-grained controls is a promising direction that can reduce the

attack impact. Lastly, Hanguard’s [29] approach should be further investigated to provide

end-users with control to mitigate risks.

2.1.3 Cloud Endpoint

Cloud endpoints are the Internet components of the IoT deployment, and in a sense, they

define what IoT is. They provide core services like remote administration, alerts, and digital

content. The IoT devices and their mobile applications trust these cloud endpoints, which

gives adversaries an additional attack point.

Attack Vector

The attack by Max [8] is a great example that touches on all components of the IoT ecosys-

tem. The attack discovered insecure application program interface (API) on the cloud

endpoint for the August Smart Lock, which escalated a guest account to an administra-

16

tor account. Blaich [32] audited the Wifi Barbie doll for various vulnerabilities and found

that the cloud endpoints did not authenticate firmware downloads, had multiple cross-site-

scripting vulnerabilities, allowed username enumeration, had no brute force limiting, and

issued never expiring cookies. Obermaier et al. [10] audited the cloud endpoints of surveil-

lance cameras and showed that an attacker can inject footage, trigger false alarms, and carry

out a denial-of-service attack against the camera system. These attacks were possible due

to vulnerabilities introduced in the configuration of the infrastructure, vulnerable services,

and insecure APIs. Zuo et al. [56] leveraged client-to-cloud trust to implement AutoForge,

which forges requests from the mobile applications to the cloud endpoints enabling pass-

word brute-forcing, password probing, and security access token hijacking. Implicit trust

between IoT components is sensitive and vendors must verify endpoints before allowing

them unfettered access.

IoT integration platforms, like IFTTT [57], automate.io [58], and CloudWork [59], are

third-party cloud endpoints. They use OAuth tokens to connect multiple IoT devices to

perform user programmed tasks. Surbatovich et al. [34] studied the security implications

on privacy and integrity when using recipes1 and showed that some recipes can allow at-

tackers to distribute malware and carry out denial-of-service attacks. Nandi et al. [31]

reported a similar type of user-induced programming error through trigger-action program-

ming (TAP), which led to an incorrect event triggering or a lack thereof. Fernandes et

al. [35] pointed out that the cloud integration platforms can be compromised, which might

expose the user’s OAuth tokens publicly. These scenarios are likely to happen based on

recent platform compromises like Equifax [60] and Orbitz [61]. The work of Wilson et

al. [33] did not identify an attack vector on the IoT ecosystem, but it studied the privacy

and trust that users place with IoT vendors. These attacks show that cloud integration ser-

vices lack fine-grained control and they leak private and sensitive information that can lead

to a breach.
1recipes are high-level programmable instructions that are used to trigger IoT device actions based on an

occurrence of an event.

17

Mitigation

To mitigate these attacks, Max [8], Obermaier et al. [10], and Blaich [32] recommend

proper configuration and secure authentication mechanisms. Surbatovich et al. [34] offered

a framework to analyze the cloud platform recipes, which motivated later work. Nandi et

al. [31] proposed an automatic trigger generation system that analyzes user-defined triggers

for errors and rectifies them by rewriting the triggers. Fernandes et al. [35] proposed the

use of a decentralized framework for trigger-action programmable platforms called DTAP.

The DTAP platform is a shim between the IoT cloud platform and the user’s local network

and brokers access to the IoT devices based on transfer tokens (XTokens). The mitigation

techniques include securing cloud endpoints, offering tools to analyze third-party integra-

tion services, assisting developers in generating correct triggers for their applications, and

providing short-lived tokens with constrained access to a device’s functions.

Somewhat related, Wilson et al. [33] looked at empowering IoT users that trust the

vendors with their private data. The technique is known as TLS-Rotate and Release (TLS-

RaR), which requires an auditor entity collecting TLS packets to request the session key

from the vendor to decrypt the communication. The vendor then rotates the TLS session

key and discloses to the auditor the prior key to decrypt the collected TLS packets. The

audit system must be deployed on the end-user demarcation side and collects traffic for

devices that they wish to audit.

Stakeholders

The vendor controls the cloud endpoints and the users do not have a way to inspect or con-

trol what their device sends to the cloud endpoints [53, 62]. Additionally, third-party cloud

providers offer infrastructure-as-a-service (IaaS) and platform-as-a-service (PaaS) to IoT

deployment. Many of the IoT devices rely on cloud-based infrastructure to run their ser-

vices. Unplanned outages[63], infrastructure compromises[64], and intentional attacks[65]

impact the deployment of the cloud endpoints. When it comes to cloud infrastructure con-

18

figuration and API implementation ([8, 32, 10]), the vendor is responsible for the mitigation

of the vulnerabilities.

Newer IoT devices are taking advantage of managed IoT platforms, which offload much

of the security responsibilities to the public cloud providers. On the other hand, the majority

of the proposed frameworks ([31, 35, 33]) are user-centric and give end-users visibility and

control in a limited way. The work by Fernandes et al. [35] and Wilson et al. [33] is a

hybrid approach and can be deployed jointly by vendors and users or by a trusted third-

party. As for cloud providers, the vendor can mitigate their exposure by diversifying and

over subscribing to different cloud providers.

Take Away

IoT cloud endpoints exhibit insecure cloud deployment through configuration and API im-

plementation, but these vulnerabilities can be addressed with readily available tools for

cloud security. Additional measurements are needed to further understand the extent of

these misconfigurations in cloud deployments. The Censys Project [66] is a valuable source

of data that can allow researchers to historically analyze IoT infrastructure. Further, the

IoT cloud integration platforms introduce new challenges that mimic classical work like

Decentralized Trust Management [67]. Integration cloud platforms offer users a way to

chain multiple IoT devices to execute tasks based on an event, and they suffer from over-

privilege recipes and privacy implications, which is demonstrated in the work of Surbatovic

et al. [34].

Fernandes et al. [35] utilized prior techniques for the IoT cloud platforms by applying

trust management systems and token authentication protocols to the IoT platforms. Vendors

are adapting managed IoT cloud platforms, which shifts the security responsibility to cloud

providers like Amazon IoT Core [68], Azure IoT Hub [69], and Google Cloud IoT [70].

IoT cloud endpoints are relying more on third-party infrastructure to deploy and run their

services, which means vendors should consider a contingency plan for unplanned outages

19

and infrastructure compromises. Additional studies are needed to understand the managed

IoT cloud platforms and what possible weaknesses exist.

2.1.4 Communication

Network communication in IoT deployment fall into two classes of protocols, Internet

protocol (IP) and low-energy (LE) protocol. Both communications can exist on the user

demarcation (see Figure 2.1) of the network, but only IP communication can go over the

Internet. Researchers from industry and academia both are heavily invested in the security

of network communication because of its applicability in other areas.

Most home-based IoT systems implement four types of communication protocols: IP,

Zigbee, Z-Wave, and Bluetooth-LE (BLE). IoT devices choose to use the IP suite for com-

munication due to its reliability and proven capability of transferring incredible volumes

of global network traffic. The IP protocol is stateless and offers no security, but it can be

supplemented by the use of TCP and TLS/SSL protocols to provide the security features

needed. Based on the literature, we identified five popular application layer protocols that

home-based IoT devices use, namely: DNS, HTTP, UPnP, NTP, and custom implementa-

tions.

Attack Vectors

The DNS protocol is a lightweight protocol that Internet services rely on, but inadvertently

leaks private information based on the recursive and client configurations. Kintis et al. [51]

found that open recursive DNS that enable EDNS Client Subnet feature (ECS) [71] (which

embeds a truncated portion of the client’s IP address) have privacy implications. Selvi [42]

demonstrated how a MITM attack on NTP was used to bypass HTTP strict transport se-

curity (HSTS). The HTTP protocol gives a more reliable mode of transportation, but like

DNS and NTP, it does not provide any confidentiality or integrity. Bellissimo et al. [72]

and Samuel et al. [54] demonstrated how an insecure protocol like HTTP allows attackers

20

to MITM and backdoor the system software update process.

IoT devices widely rely on UPnP protocol to offer easy configuration and control. UPnP

uses the HTTP protocol, hence inherits the same flaws [73]. Garcia [37] showed how

attackers abuse UPnP because it lacks authentication, validation, and logging. GNUciti-

zen [74] demonstrated how an UPnP enabled device is vulnerable to cross-site scripting

(XSS) vulnerabilities, while HD Moore [75] presented statistics and measurements around

UPnP enabled devices on the Internet. Their work demonstrates that unauthenticated and

unencrypted use of application layer protocols enables attackers to mass exploit devices,

which leads to additional attacks. TLS/SSL sessions provide confidentiality and integrity,

which help address the inherent flaws in these communication protocols.

Researchers have thoroughly examined the TLS/SSL protocols and uncovered severe

vulnerabilities. Starting off in 2011, BEAST [36] exposed the initialization vector (IV) flaw

in TLS 1.0, which allowed attackers to predict the IV of the next message in the stream.

In 2012, CRIME [45] showed how TLS sessions that allow compression, like Google’s

SPDY protocol, were susceptible to session hijacking. In 2013, AlFardan et al. [38] used

malformed packets to infer time delays, a side-channel attack, in the MAC verification to

statistically infer the plaintext from the ciphertext. AlFardan et al. [41] also showed how

the RC4 stream cipher weakens the security of TLS sessions. POODLE [43] exposed a

downgrade flaw in SSL 3.0 that allowed for insecure communication between two parties.

Beurdouche et al. [46] found flaws in several client and server implementations of TLS/SSL

libraries that allow MITM attacks, including the FREAK [44] vulnerability.

Additional attacks disclosed by Adrian et al. [47] and DROWN [49] illustrated the dif-

ficulty of implementing secure communication protocols. Many IoT communications are

susceptible to MITM attacks because they support older versions of TLS/SSL protocols.

TLS/SSL is also widely used in managed IoT platforms to secure the communication chan-

nels. Emerging managed IoT platforms, like AWS IoT Core [68], Azure IoT Hub [69], and

Google Cloud IoT [70], implement custom protocols that utilize certificates and TLS/SSL.

21

These protocols and platforms are sparsely documented but rely on time-tested technolo-

gies to implement secure end-to-end communication.

The BLE [76], Zigbee [77], and Z-Wave [78] protocols have many security problems.

Ryan [39] showed a severe flaw in the key-exchange protocol for Bluetooth, which allows

an attacker to passively recover the session key. Jasek [50] demonstrated how attackers

can passively and actively abuse the generic attribute profile in the GATT layer found in

Bluetooth network stack. Zillner et al. [48] showed how the Default Trust Center Link

Key defined by the Zigbee Alliance [77] is the same across all devices. Fouladi et al. [40]

showed how a hard-coded constant in the Z-Wave firmware is used to derive session keys,

which eventually became publicly known. Legacy versions of LE protocols have critical

security flaws, which many home-based IoT devices implement in hardware; hence limits

their mitigation options.

Aside from the inherent flaws, LE protocols offer a proximity feature that authentica-

tion systems rely on to identify geographical presence. Ho et al. [79] showed how relay

attacks were possible against LE protocols by serializing the LE packets and relaying them

over IP. Researchers have shown that MITM relay attacks against LE protocols are practical

and break the geographical proximity, which authentication systems rely on. These com-

munication channels can have privacy concerns as demonstrated by Apthorpe et al. [52]

and Wood et al. [53].

Mitigations

For HTTP, UPnP, DNS, and NTP protocols, the suggested mitigations include disabling the

ECS feature in DNS, using updated versions of the NTP protocol (NTPv4), and using TL-

S/SSL with insecure protocols (HTTPS). For TLS/SSL implementation flaws, upgrading

the server-side and client-side libraries to the latest version should address the vulnerabil-

ities. Further, disabling weak or vulnerable TLS/SSL versions reduces exposure but loses

backward compatibility. For LE-based communication, the first generation of Zigbee and

22

Z-Wave protocols have critical flaws and have limited mitigation options. Vendors can

disable insecure portions of these protocols [80] at the expense of compatibility.

A recent direction by researchers is the work found in Apthorpe et al. [52] and Wood

et al. [53]. Wood et al. [53] proposed a system that monitors the home network and in-

form users of sensitive data sent by IoT devices. Apthorpe et al. [52] demonstrated how

traffic shaping on the home network can prevent side-channel snooping. This direction of

research requires additional attention to empower consumers in protecting their networks

and privacy.

Devices electing to use Z-Wave must now opt for Z-Wave Plus, which has improved

security [81] and over-the-air (OTA) update capabilities. Also, Zigbee added a new secu-

rity model to allow for secure-key distribution known as Trust Center (TC) [82]. TC is

a trusted entity within the Zigbee network that is authorized to distribute keys to Zigbee

client devices. TC gives each Zigbee connected device a unique encryption key, unlike the

legacy key distribution schema. To mitigate relay attacks in LE protocols, Ho et al. [79]

introduced a touch-based-intent communication approach using body-area network (BAN)

for signal propagation.

Stakeholders

End-users cannot address the communication flaws since the implementation is on the de-

vice, the cloud endpoint, or in the mobile application. Further, vendors have limited options

in addressing the communication vulnerabilities since some flaws require a hardware up-

grade, but in some cases they can disable them [80]. The vendors can patch vulnerable

libraries on the device, the mobile application, and the cloud endpoints.

Internet service providers (ISPs) have visibility into the utilization of IP based proto-

cols, but they are not directly responsible for any mitigation. For ISPs to be involved, they

must provide network and legal policies that define their role. As for the LE protocols, ven-

dors can mitigate legacy devices by disabling vulnerable pairing. Users can use alternate

23

methods for pairing LE devices with IoT hubs if such options exists. Users can buy newer

devices that offer next generation secure LE protocols, like Z-Wave Plus and Zigbee.

Take Away

Communication channels provide essential functions for home-based IoT. Home-based IoT

devices have adapted industry standards for IP and LE protocols, but they suffer from

legacy libraries that in some cases cannot be fixed.

Vendors bear the responsibilities for addressing the vulnerabilities in the communica-

tion channels. Further, cloud endpoints and mobile applications can be updated by the

vendor directly, but vendors must be proactive and informed about vulnerabilities affecting

their software. IoT devices continue to rely on insecure protocols like UPnP and, as we will

show next, rarely encrypt their communication on the LAN. End-users do not know if their

device or mobile application is vulnerable to weak encryption or MITM attacks unless they

analyze and test the communication traffic. An informed power-user might segment their

local network into trusted and untrusted zones to limit the exposure.

TLS/SSL addresses insecure protocols that are susceptible to MITM attacks, but they

also exhibit flaws in their implementation and deployment. The work of Clark et al. [83]

provided additional analysis regarding SSL and HTTPS. ISPs can provide reports outlining

best network practices and statistics about device and protocol utilization. Managed cloud

IoT platforms use custom communication protocols that rely on public-key infrastructure

(PKI) and TLS/SSL protocols. Further studies are required to investigate protocols used

by managed cloud IoT platforms. These new platforms are not well studied and warn for

further investigation to identify any weaknesses.

2.2 Malware Analysis

In order to perform a systematic comparison between traditional and IoT malware, we

require a principled framework that describes the malware threat cycle. We systematized

24

the literature on traditional malware and noticed five main components of the malware

lifecycle:

• Infection Vector is how the malware attacks a system.

• Payload is the dropped malware code after exploitation.

• Persistence is how the malware installs on a system.

• Capabilities are the functions in the malware code.

• C&C Infrastructure is how the malware communicates with the operator.

For each component, we identify techniques discussed in the literature for traditional mal-

ware (desktop/mobile) and empirically measure it for IoT malware (chapter 5). We further

refine the categories by examining 25 papers from the systematized works to derive subcat-

egories under each component qualitatively. We then use the MITRE ATT&CK taxonomy

to derive additional subcategories not found in prior academic works but documented by

security companies. Table Table 2.2 summarizes the comparative analysis framework com-

ponents and their definitions.

2.2.1 Infection Stage

Desktop Infection Vectors. In Table Table 2.3, we see desktop malware pioneered many of

the infection techniques. Moore et al. [84] document the SQL Slammer worm that exploited

vulnerable SQL services on the internet. Although no large academic study explored desk-

top malware use of repackaging, default credentials, and removable media, there are ample

instances from security companies documenting these techniques [85, 86, 87]. Desktop

malware rely more on infection vectors like drive-by download and phishing. Provos et

al. [88] present an extensive study on drive-by downloads, and several prior works mea-

sure [89, 88, 90, 91] and propose defenses [92, 93, 94] for them.

25

Table 2.2: A summary of the proposed comparative framework and definitions for each
component.

Components Definition for each component’s subcategories
In

fe
ct

io
n

Remote Exploit Remote Exploit refers to exploiting a service or an application running on a device.
Repackaging Repackaging refers to benign application repackaged with malware (i.e. pirated software).
Drive-by Drive-by refers to infection by redirecting the system to a malicious resource.
Phishing Phishing refers to social engineering attacks that trick a user into getting infected.
Default Cred. Default Credentials refers to the use of vendor default credentials for device access.
Rem. Media Removable Media refers to the use of USB for infection between devices.

Pa
yl

oa
d Packing Packing refers to the use of packers or polymorphic techniques for obfuscation.

Env. Keying Env. Keying refers to the dependence on the target’s environment artifact (i.e. HW id).
Scripting Scripting refers to the use of a scripting interpreter (i.e. Powershell, sh, etc.).
Cross-Arch/Plat. Cross-Arch/Plat. refers to using payloads for different architectures (x86, ARM, etc.) or platforms (Windows, Android, etc.).

Pe
rs

is
t. Firmware Firmware refers to persisting by modifying the device’s firmware.

OS - Kernel OS - Kernel refers to persisting as a kernel module.
OS - User OS - User refers to persisting in user-space through configuration or process/service.

C
ap

ab
ili

ty

Priv. Escalation Priv. Escalation refers to exploiting OS vulnerability to elevate privilege on a device.
Defense Evasion Defense Evasion refers to actively avoiding or disabling security features on the device.
Info. Theft Info. Theft refers to profiling and exfiltrating sensitive information from the device.
Scanning Scanning refers to using the device to scan for other devices.
DDoS DDoS refers to using the infected device to orchestrate a DDoS attack.
Destruction Destruction refers to actively destroying or ransoming the device.
Resource Abuse Resource Abuse refers to using the device to run unauthorized services or applications.

C
&

C Peer-2-Peer Peer-2-Peer refers to using peer-2-peer network protocol for managing the botnet.
Centralized Centralized refers to using a central C&C server for managing the botnet.
Email/SMS Email/SMS refers to using email or short message service for call-back to the bot master.

For phishing, Abu Rajab et al. [95] present a multi-dimensional measurement into bot-

nets. Their work documents how botnets leverage phishing emails for spreading. Holz et

al. [89] and Kotzias et al. [96] empirically show that phishing is a common infection vector

affecting desktop users. Desktop malware continued to evolve and make up a large portion

of the threats on the internet. The key insight is that desktop malware initially used remote

exploitation and default credentials to automatically spread but has evolved to depend on

user interaction. Currently, desktop malware’s most common infection techniques require

user interaction such as phishing (email), drive-by download (browsing), removable media

(physical interaction), and repackaging (i.e. pirated software).

Mobile Infection Vectors. Similar to our study, Zhou et al. [108] look at Android mobile

malware and characterize the infection techniques. Their work shows that many Android

malware use repackaging, drive-by download, and phishing to propagate as shown in Ta-

ble Table 2.3. Lindorfer et al. [110] identify removable media propagation techniques in

their large-scale study. The key insight is that unlike desktop malware, mobile malware is

dependent on user interaction. Automated spreading has not been documented for the mo-

bile platform. While worm-based malware for the Android platform do exist, they require

26

Table 2.3: A comparison between desktop, mobile, and IoT malware using the proposed
framework.

Components Summary Desktop Mobile IoT

Categories D
es

kt
op

M
ob

ile

Io
T

M
oo

re
03

[8
4]

K
ru

eg
05

[9
7]

A
bu

Ra
06

[9
5]

Ba
rfo

07
[9

8]
A

bu
Ra

07
[9

9]
D

ag
on

07
[1

00
]

H
ol

z0
8

[1
01

]
Po

ly
c0

8
[1

02
]

K
an

ic
08

[1
03

]
H

ol
z0

8
[8

9]
Pr

ov
o0

8
[8

8]
St

on
e0

9
[9

2]
Lu

10
[9

3]
Ch

o1
0

[1
04

]
Li

nd
o1

1
[1

05
]

Sh
in

11
[9

0]
Ro

ss
o1

2
[1

06
]

In
ve

r1
4

[9
4]

K
w

on
15

[9
1]

G
an

an
15

[1
07

]
Ko

tz
i1

9
[9

6]
Zh

ou
12

[1
08

]
Le

ve
r1

3
[1

09
]

Li
nd

o1
4

[1
10

]
Ta

m
17

[1
11

]

In
fe

ct
io

n

Remote Exploit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sec.subsection
5.3.2

Repackaging ✓* ✓ ✓

Drive-by ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Phishing ✓ ✓ ✓ ✓ ✓ ✓

Default Cred. ✓* ✓ ✓

Rem. Media ✓* ✓ ✓

Pa
yl

oa
d Packing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sec.subsection
5.3.3

Env. Keying ✓ ✓ ✓ ✓ ✓ ✓

Scripting ✓* ✓ ✓

Cross-Arch/Plat. ✓* ✓ ✓ ✓ ✓

Pe
rs

is
t. Firmware ✓ ✓ ✓ ✓

Sec.subsection
5.3.4

OS - Kernel ✓ ✓ + ✓ ✓ ✓ ✓

OS - User ✓ ✓ + ✓ ✓ ✓

C
ap

ab
ili

ty

Priv. Escalation ✓ ✓ ✓ ✓ ✓ ✓

Sec.subsection
5.3.5

Defense Evasion ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Info. Theft ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scanning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DDoS ✓ ✓ ✓ ✓ ✓ ✓

Destruction ✓ ✓ ✓ ✓ ✓ ✓

Resource Abuse ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C
&

C Peer-2-Peer ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sec.subsection
5.3.6

Centralized ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Email/SMS ✓ ✓ ✓ ✓

∗ Techniques documented by security researchers. + Unified software layer that integrates OS and firmware.

users to visit a link to get infected.

2.2.2 Payload Stage

Desktop Payload Properties. In Table Table 2.3, we see that all the payload categories

apply to desktop malware. Kruegel et al. [97] predicted the rise of polymorphic payloads

and proposed a way to detect them offline. Later, Barford et al. [98] studied the operation

of several desktop family bots, such as GT bot, SpyBot, SDBot, and Agobot, and identified

polymorphic payload obfuscation using XOR encoding. Moreover, Holz et al. [89] show

that the payloads for the Storm botnet are polymorphic and change every minute, which

ensures the payload has different static features to evade detection. Rossow et al. [106]

studied downloaders, which are bots that download other malware or unwanted programs.

Their work identified more than eight different packer techniques in use by downloaders.

These findings suggest that desktop malware payloads use polymorphism to evade detec-

tion.

On the defense side, Invernizzi et al. [94] propose a technique to detect polymorphic

27

payloads in large networks by augmenting networking information such as URI and counts.

In addition to packing, environmental keying [105, 112] and scripting [113] are key compo-

nents for desktop malware to bypass network and host defenses. For scripting, the payload

is in the form of a text file that is executed by an interpreter such as Powershell, Python,

Lua, or sh. Moreover, desktop malware makes use of cross-architecture and platform pay-

loads for banking malware [110]. These observations suggest that the packaging of cross-

architecture and platform payloads introduce a novel infection approach by crossing from

trusted devices such as mobile phones and desktops.

Mobile Payload Properties. Zhou et al. [108] observe polymorphic and environmental

keying behavior in Android apps. They identify malware samples that adopt the use of

polymorphic techniques in the Android environment by using code reflection. They also

identify malware samples that check the integrity of their code to ensure that the code is

not tampered with. Similar to desktop malware, Lindorfer et al. [110] observe Android

malware embedding Windows malware with autorun features that execute once the phone

is plugged into a desktop. This advanced behavior leads to cross-architecture and platform

infection from trusted devices giving attackers further reach. The key insight is that mo-

bile malware use the same techniques as desktop malware but have limited script-based

payloads. Script payloads for mobile devices can be invoked from installed applications,

WebView, or exposed services like Android Debug Bridge (ADB), which requires the mal-

ware to be already present on the device.

2.2.3 Persistence Stage

Desktop Malware Persistence. Table Table 2.3 shows that desktop malware use all levels

of persistence. Provos et al. [88] and Polychronakis et al. [102] identify bots that persist

through user-space and kernel modules, respectively. Additionally, Stone-Gross et al. [92]

document torpig’s botnet and the mebroot infector, which both modify the Master Boot

Record (MBR) entry on a hard drive’s partition allowing them to run before the OS. Desk-

28

top malware demonstrate the capability to persist on machines at many levels from the

user-space all the way down to the firmware, which are outside the visibility of security

tools making them hard to detect and remove.

Mobile Malware Persistence. Mobile malware by default installs and persists as a mobile

app on devices unless removed by users or security software. Mobile malware can request

background service permissions, subscribe to activities, and broadcast receivers giving it

multiple entry points for execution. Researchers [108, 110, 111] show that mobile malware

leverage all these entry points for persistence on the Android platform. For example, if

malware subscribes to a broadcast receiver for SMS, the malware can execute a specific

code that reads the SMS content. The key insight is that the event-driven nature of mobile

applications provides a unique persistence method for malware. Detecting event-driven

methods is more challenging because it requires anti-malware tools to know the triggering

event ahead of time, which can be difficult when the malware is obfuscated.

2.2.4 Capability Stage

Desktop Malware Capability. In Table Table 2.3 we find that desktop malware exhibit

all of the listed capabilities. Moore et al. [84] document the capabilities of the Slammer

worm, which other botnets also borrow [95, 98, 102, 90, 96]. Several works [103, 92, 104,

107] identify information theft and resource abuse (cryptocurrency mining, click fraud,

proxy services, spam, etc.) as a common use of infected devices by desktop malware.

Additionally, more recent activities include ransoming devices [96] and DDoS attacks [95]

for hire.

Another aspect of desktop malware capabilities is the fact that it can escalate privi-

leges [102] by exploitation or keylogging, and they can evade detection by disabling se-

curity tools [105, 106]. The key insight is that desktop malware have diverse capabilities,

and malware families specialize based on the intended target and the attacker’s goal. For

example, remote access can be a specialized capability that targets payroll processing sys-

29

tems. Moreover, the amount of sensitive information and compute resources (i.e. GPU)

found on desktop platforms may make them a desirable target for ransom, information

theft, extortion, and compute-intensive abuse.

Mobile Malware Capability. Table Table 2.3 shows that mobile malware has the same

abusive capabilities as desktop malware with the exception of scanning and DDoS attacks.

Zhou et al. [108] identify malware that root mobile devices, evade detection through dy-

namic code reflection, steal sensitive information, and abuse SMS services by sending mes-

sages to premium numbers. Lindorfer et al. [110] present similar findings, but in addition

they find ransomware capabilities that lock devices in exchange for payment. Mobile mal-

ware implement a subset of the capabilities found in desktop malware, which may be corre-

lated with the features found on each platform. Unlike desktops, mobile devices generally

have lower bandwidth, lower compute resources, are energy conservative, and support a

single-user profile.

2.2.5 Command & Control Stage

Desktop Malware C&C. Table Table 2.3 shows that desktop malware use all of the listed

methods for C&C communication. Polychronakis et al. [102] show that desktop malware

rely on email for C&C call-back. Moreover, Kanich et al. [103] and Holz et al. [89] study

the Storm botnet P2P network to analyze the spam campaigns and estimate the botnet

size. They identify a complex layered infrastructure of a hierarchy of workers, proxies,

and master nodes based on the Kademlia DHT protocol. They speculate that this complex

infrastructure allows the botnet to scale and be resilient to takedowns. However, Rossow et

al. [106] found from a large-scale study that centralized infrastructure was more prevalent

than P2P.

For centralized C&C infrastructure to be more resilient, malware use domain genera-

tion algorithms (DGA) [92, 94], multi-tier centralized topology [104], fast-flux [101], and

bulletproof or hacked [107] servers. The key insight is that desktop malware enhances the

30

scalability and resilience of their infrastructure by organizing into specific topologies or by

incorporating pseudo-randomness in their domains. For example, Holz et al. [101] note

content delivery networks (CDNs) and round-robin DNS (RRDNS) provide resilience for

internet applications, which malware mimics by using fast-flux.

Mobile Malware C&C. Lindorfer et al. [110] found that even though the majority of

malware use centralized C&C servers, some mobile malware use SMTP to send sensitive

information by email. Most empirical measurements [108, 109, 110] identify that mobile

malware does not use the same sophistication for C&C call-back found in desktop mal-

ware. Furthermore, Lever et al. [109] compared mobile malware domains with desktop

malware domains and found no major differences. The key insight is that mobile malware

may not use sophisticated C&C infrastructure because of their network mobility property.

For example, if a mobile device is connected to a network that blocks its C&C server (mo-

bile network operator), the device will eventually connect to another network (coffee shop

WiFi) as it changes its physical location, which may allow connections to the C&C server.

Take Away

The systematization highlights the maturity of the desktop and mobile malware landscape.

In particular, we observe that desktop and mobile malware have diverse attack vectors, uti-

lize unique tactics in their payload, and persist at different layers in the system. Moreover,

desktop and mobile malware tailor their capabilities to extract monetary value from infected

systems through resource abuse, extortion, or information theft. Lastly, we find three pri-

mary communication tactics used by malware that vary in implementation. These derived

categories provide a point of reference that we will later use to compare IoT malware to

traditional malware to infer the potential development of the IoT malware landscape. This

will inform the risk analysis approach of potential attacks that we must consider.

31

2.3 Related Work

2.3.1 IoT Security Evaluation

The systematization shows that current efforts focus on one or two components of an IoT

deployment, leaving a gap in comprehensiveness. In contrast, in this dissertation, we ap-

ply a more complete approach that considers all four components: device services, mobile

app, cloud endpoints, and network communication. Furthermore, this work incorporates

a time component by iteratively evaluating the security of IoT deployment. Recently, re-

searchers have started to investigate changes in IoT device lifecycle by characterizing TLS

communications [114], measuring device updates [115], and attacks on cloud management

endpoints [116]. However, these efforts provide a micro-view of a specific protocol or

feature over time on the device. This dissertation provides a broader view by examining

the device and network communication over a more extended period (18 months), which

provides a better perspective on how IoT devices age.

2.3.2 IoT Malware Analysis

Malware targeting embedded Linux-based systems was first reported in 2008 with the dis-

covery of the Hydra IRC bot [117]. Since then, several other bots have entered the scene

with various capabilities. Such bots include psyb0t [118], Chuck Norris [119], Carna [120],

Tsunami [121], Aidra [122], Dofloo [123], Gafgyt [124], Elknot [125], XOR.DDoS [126],

Wifatch [127], TheMoon [128], LUABot [129], Remaiten [130], NewAidra [131], and

Moose [132]. Each family had different purposes such as credential theft [132], cryptocur-

rency mining [133], device destruction [134], internet-wide scanning [120], and cleaning

up infected devices [127, 135]. IoT malware development has many considerations due

to the heterogeneity of devices. For example, an IP camera and a set-top box can have

different processors, C libraries (uclibc, musel, glibc), and kernel versions/features (Linux

2.6, 3.2, 4.6, etc.).

32

The release of Mirai’s source code and recent developments in embedded system toolchains

has made it easier for IoT malware development. Antonakakis et al. [1] note that Mirai had

a wide impact due to the fact that its small code base runs on diverse devices, spreads effi-

ciently, and targets a large number of insecure IoT devices on the internet [136, 137]. The

Mirai botnet took down critical DNS infrastructure [138], disconnected over 900K internet

subscribers [139], and attacked a large cloud service provider [140]. Soon after the release

of Mirai’s code, many variants began to surface with enhancement to its infection vector,

payload obfuscation, and C&C communication. For example, Satori [141], a Mirai vari-

ant, gained momentum as it exploited a new vulnerability in Huawei routers. These recent

developments provide further motivation to understand the IoT malware landscape.

Prior studies looked at IoT malware from different perspectives. Cozzi et al. [142]

investigate Linux-based malware but only examine 10K samples, of which 35% are for

x86 and x86 64 architecture. Other studies examine specific malware families such as

Mirai [1] and Hajime [135]. More comprehensive studies examine individual components

of the IoT malware lifecycle. For example, several works [143, 144, 145, 146] examine

IoT malware infection tactics and the payload properties. Other works [147, 148] look at

how to detect IoT malware by studying its binary static structural features. De Donno et

al. [149] organize IoT malware attack capabilities into a taxonomy while Choi et al. [150]

study the role that C&C infrastructure plays in the lifecycle of IoT malware.

Additional efforts [151, 152] investigate scanners on the internet to identify if they are

infected by IoT malware. Finally, Çetin et al. [153] present a unique perspective on IoT

malware infection cleanup by combining multiple data sources and a user study to measure

remediation efforts. Our work differs in two aspects. First, we propose a five-component

framework that captures the entire lifecycle of IoT malware, which we use to compare with

desktop and mobile malware. Second, we conduct the largest and most comprehensive

empirical measurement for more than 166K Linux-based IoT malware samples collected

over an entire year.

33

CHAPTER 3

SECURITY EVALUATION OF HOME-BASED IOT DEPLOYMENTS

Figure 3.1: Single IoT deployment.

IoT Hub Mobile AppsLE Devices

Cloud Endpoints

Figure 3.2: IoT graph model.

c0c1

a0

d2

d1

d∗0

In chapter 2 we identified four components of an IoT deployment. In this chapter, we

formalize this observation and utilize it to evaluate 45 commercial off-the-shelf (COTS)

home-based IoT products. The approach involves segmenting each device into its respec-

tive topology as shown in Figure 3.1. Formally, we define an IoT deployment as a set

of vertices V and edges E as illustrated in Figure 3.2. Overall, our abstract model has

four main components: a set of devices (D), a set of cloud endpoints (C), a set of mobile

applications (A), and a set of communication channels (E).

where: A,C,D ⊂ V ; D : {di, i ∈ Z};

C : {cj, j ∈ Z}; A : {ak, k ∈ Z};

E : {el, l ∈ Z}

For each device deployment, we construct a representative graph and examine the security

properties for each component.

34

3.0.1 Security Properties

The security properties have three categories: attack vectors, mitigations, and stakeholders.

Attack vectors are the methods used to circumvent the security of the IoT system. The

mitigations define which measures should be taken to address the attack vectors. Lastly,

the stakeholders represent the party responsible for mitigation. In this chapter, we will

examine the attack vectors on all four IoT components by empirically evaluating 45 COTS

IoT devices for the following attack categories:

Attack Vector. The device has three attack categories: vulnerable services, weak authenti-

cations, and default configurations that are defined as follows:

• Vulnerable services refers to vulnerabilities in running services.

• Weak authentications refers to weak or guessable credentials.

• Default configurations refers to the device operating with insecure factory settings.

The mobile application has three attack categories, permissions, programming, and data

protection that are defined as follows:

• Permissions refers to a mobile application being over-privileged.

• Programming refers to the mobile application containing vulnerable implementa-

tions, including improper use of cryptographic protocols.

• Data protection refers to the mobile application hard coding sensitive information.

The communication of the components have two attack categories, encryption and man-in-

the-middle (MITM) that are defined as follows:

• Encryption refers to the lack of encryption or support of weak encryption protocols.

• MITM refers to the susceptibility to a man-in-the-middle attack.

The cloud endpoint shares the following attack categories with devices and communication

edges: vulnerable services, weak authentications, and encryption, as defined above.

35

3.0.2 Evaluation Scope and Attack Model

We limit our scope to home-based IoT devices because they are relevant to the systematized

work, they are readily available, and the experiment setup can be easily reproduced. For the

evaluation, we simplify the attack model to an Internet protocol (IP) network attacker. We

recognize that there are more powerful adversaries that can attack low-energy (LE) based

devices [21], but they require specialized resources that are not available in many home

networks. We consider the exploitation of a hub device (communication bridge between

low-energy and IP) to be equivalent to exploiting all the connected low-energy devices

because a trust session exists between the hub and the low-energy devices. We exclude

direct evaluation of low-energy devices but consider their hubs for evaluation. Finally,

we consider the home network to be an untrusted network and we make no assumptions

about the security state of mobile applications, modems/routers, or web browsers that have

complete visibility to the home network ([28]).

3.1 Security Evaluation Methodology

This section will cover the testbed architecture, challenges and limitations, and the security

evaluation approach. Our methodology and evaluation require minimal technical expertise

to replicate and are deliberately devised to appeal to a wide range of technical audiences

allowing them to contribute to this effort. We used a mix of commercial and open-source

tools to conduct the evaluation; all of the commercial tools have open-source counterparts.

Our evaluation results are summarized in Table 3.3.

3.1.1 Testbed

Building a home-based IoT testbed is challenging and requires careful planning. This sec-

tion will cover the details of the testbed we developed for this study. We will cover device

selection, network architecture, device management, data collection, and testing tools. Ta-

36

ble Table 3.1 summarizes the automation effort for each stage in the testbed. For each

stage, we will present the tools and technical approach.

Table 3.1: A summary of the efforts required for the testbed components and evaluation
stages.

Stage Process Manual Semi-Auto Automated

Deployment

Documentation ✓

Network Provisioning ✓

Physical Deployment ✓

Connectivity Configuration ✓

Reachability/Functional Test ✓

Data Collection

Network Traffic ✓

Device Scans ✓

Mobile App Analysis ✓

Cloud Scans ✓

Evaluation

Network Protocols ✓

Network Interception ✓

Device ✓

Mobile App ✓

Cloud ✓

Analysis

Network Proto./Intercept ✓

Device Vuln. ✓

Mobile App Vuln. ✓

Cloud Labeling ✓

Cloud Vuln. ✓

Device Selection

We evaluated 45 devices spanning categories that include appliances, cameras, home assis-

tants, home automation, media, and network devices. We chose the most popular devices

available on the market at the time of the study but also included some white-label devices

with no specific brand (i.e., Chinese Webcam). A complete list of the evaluated devices

is in Table 3.2. The device selection process is essential for several reasons. First, the

diversity can identify vulnerabilities unique to specific device types or vendors. Second,

diversity can help evaluate the effectiveness of security measures across a range of devices

rather than just a single device or device type. Third, device diversity helps provide a more

realistic representation in a real-world household with IoT deployments, which typically

involve a mix of device types and vendors. Lastly and more importantly, representative

device selection increases the relevance and generalizability of the results.

37

Table 3.2: An overview of the devices used in the evaluation.

Device Category Hub Cloud
Endpoints

Mobile Application Communication

iOS Android IP Low-Energy

Belkin WeMo
Crockpot Appliance 27 ✓ ✓ ✓

Roomba Appliance 11 ✓ ✓ ✓

Belkin Netcam Camera 79 ✓ ✓ ✓

Canary Camera 22 ✓ ✓ ✓ ✓

Chinese Webcam Camera 1 — — ✓

D-Link DCS5009L Camera 4 ✓ ✓ ✓

Logi Circle Camera 341 ✓ ✓ ✓ ✓

Nest Cam IQ Camera 9 ✓ ✓ ✓ ✓

Nest Camera Camera 7 ✓ ✓ ✓ ✓

Netgear Arlo Camera 59 ✓ ✓ ✓

Piper NV Camera 42 ✓ ✓ ✓ ✓

Withings Home Camera 20 ✓ ✓ ✓ ✓

Amazon Echo Home Assistant 221 ✓ ✓ ✓

Apple HomePod Home Assistant 221 — — ✓ ✓

Google Home Home Assistant 42 ✓ ✓ ✓

Google Home Mini Home Assistant 221 ✓ ✓ ✓

Harmon Kardon
Invoke

Home Assistant 128 ✓ ✓ ✓ ✓

August Doorbell Home Automation 221 ✓ ✓ ✓ ✓

Belkin WeMo Link Home Automation ✓ 14 ✓ ✓ ✓ ✓

Belkin WeMo Motion Home Automation 221 ✓ ✓ ✓

Belkin WeMo Switch Home Automation 29 ✓ ✓ ✓

Caseta Hub Home Automation ✓ 221 ✓ ✓ ✓ ✓

Chamberlain myQ
Garage Opener

Home Automation ✓ 1 ✓ ✓ ✓ ✓

Insteon Hub Home Automation ✓ 20 ✓ ✓ ✓ ✓

Koogeek Lightbulb Home Automation 1 ✓ ✓ ✓

LIFX Virtual Bulb Home Automation 3 ✓ ✓ ✓

MiCasaVerde
VeraLite

Home Automation ✓ 74 ✓ ✓ ✓

Nest Guard Home Automation ✓ 14 ✓ ✓ ✓ ✓

Philips HUE Home Automation ✓ 27 ✓ ✓ ✓ ✓

Ring Doorbell Home Automation 9 ✓ ✓ ✓

Samsung
SmartThings

Home Automation ✓ 10 ✓ ✓ ✓ ✓

TP-Link Wifi Bulb Home Automation 11 ✓ ✓ ✓

TP-Link Wifi Plug Home Automation 11 ✓ ✓ ✓

Wink 2 Home Automation ✓ 12 ✓ ✓ ✓ ✓

Amazon Fire TV Media 174 ✓ ✓ ✓

Apple TV (4th Gen) Media 439 ✓ ✓

Bose SoundTouch 10 Media 26 ✓ ✓ ✓ ✓

Logitech Harmony Media 17 ✓ ✓ ✓ ✓

nVidia Shield Media 261 — — ✓

Roku 4 Media 231 ✓ ✓ ✓

Roku TV Media 226 ✓ ✓ ✓

Samsung SmartTV Media 182 ✓ ✓ ✓

Sonos Media 65 ✓ ✓ ✓ ✓

Google OnHub Network 24 ✓ ✓ ✓

Securifi Network ✓ 938 ✓ ✓ ✓ ✓

38

IoT VLAN Local Management
VLAN

WAN Mirror

Gateway
Network Services
• DNS
• DHCP
• Traffic Capture

Storage Server

Wireless Access Point Analysis Tools Mobile Apps

Traffic Capture

48 Port Switch

Internet

Figure 3.3: An overview of the lab architecture.

Network Architecture

The goals for the testbed network architecture are to ensure isolation from other user net-

works, reliable connectivity through wired and wireless mediums, scalability and expan-

sion for adding new devices, minimum congestion, monitoring visibility, and access control

and logging. We design our network architecture to achieve these goals as shown in Fig-

ure 3.3. Our network topology consists of three primary networks: IoT VLAN, local man-

agement VLAN, and egress traffic (multiple networks). The gateway configures the VLAN

segmentation and assignment, which provides essential network services such as Domain

Name System (DNS), Dynamic Host Configuration Protocol (DHCP), and traffic capture.

We configure wired and wireless connectivity to support various IoT devices. Precisely,

we deploy an unmanaged 48-port network switch with port mirroring and a wireless access

point. We prioritize wired connectivity over Wireless since it provides more stability and

less interference with other wireless devices. Moreover, the wired medium allows visibil-

ity on East-to-West traffic through port mirroring. On the other hand, Wireless requires

specialized networking equipment to gain visibility on East-to-West traffic.

The gateway is a general-purpose x86 computer running Debian Jessie Linux that hosts

39

dnsmasq for the DNS and DHCP services. The gateway runs full-packet capture using

tcpdump and remotely stores the traffic capture on a storage server with 50TB capacity. The

traffic is sent via an out-of-band management network configured on the gateway and never

crosses the local IoT network. The VLAN allocation helps manage and isolate IoT traffic

from other devices that need to be on the network. For example, the local management

VLANs contain several necessary devices that allow us to interact and configure the IoT

devices. Moreover, the analysis tool servers host security tools that enable us to evaluate

each device’s device and network security. Therefore, the local management VLAN and the

IoT VLAN require connectivity managed by the gateway. In the local management VLAN

we deploy two tablets, namely an Apple mini iOS iPad and a Samsung Galaxy Android

Tab. These two tablets run the IoT companion apps, which interface with the deployed IoT

devices.

The analysis servers run a variety of security tools like network vulnerability scanners,

UPnP profiler, ARP manipulation tools, TLS/SSL interception, and custom scripts. The

local management VLAN provides a testing ground to probe and manipulate traffic in the

IoT VLAN. We assign static IP addresses for the VLANs (IoT and management) to track

devices’ egress traffic and map the network communication to the corresponding device.

The static IP address assignment is critical because managing and tracking IoT devices

become cumbersome as the lab grows. Lastly, we build redundancy in the lab by deploying

a backup gateway (not shown in Figure 3.3) that maintains a copy of the active gateway.

We maintain an Ansible playbook that automatically configures and deploys the secondary

gateway in case of a network, software, or hardware failure.

Device Deployment

When deploying each device into the testbed, we strive for a standardized approach that

ensures systematic onboarding. Moreover, we design the testbed environment to have a flat

network, similar to a home network (IoT VLAN in Figure 3.3). The device deployment is

40

a manual process, as noted in Table 3.1, and it is a one-time effort. Our device onboarding

procedure is the following:

1. Document device make, model, MAC address, and credentials.

2. Note the configuration method from the manual.

3. Create a DHCP entry in the dnsmasq configuration file assigning a static IP from the

IoT VLAN pool.

4. If applicable, download the mobile applications for both platforms, iOS and Android.

5. Create an account using the mobile app and document the credentials.

6. Plug the device into a power source and configure it to connect to the internet.

7. Ensure the device has internet connectivity, correct local IP address assignment, and

is visible to mobile apps.

8. If applicable, document failure to deploy devices, the reason for failing, and potential

workaround.

The device configuration is kept at a minimum to represent the default vendor configura-

tions. We assume many users will most likely use the default security configurations on the

device and customize the functional features instead. For the initial security evaluation, we

disable automatic updates, when it is possible, to limit device behavior change. However,

after the initial security evaluation, we turn automatic updates back on and continuously

evaluate the device. More on the iterative security evaluation in chapter 4. Lastly, we cre-

ate a fictitious persona with an email address, a phone number, and a physical address to

register all the accounts for the deployed devices.

41

Data Collection

There are several things to consider for data collection. In the testbed, we collect network

traffic, device service scans, mobile app analysis artifacts, and cloud service scans. Each

requires a specific approach. Network collection is the easiest, which we passively collect

at the gateway. However, we only have partial visibility of the LAN traffic (East-to-West)

because the mirroring port on the switch only captures wired traffic. Wireless traffic re-

quires specialized equipment, which we could not accommodate. We capture the traffic

on the gateway and remotely store it on a storage server as compressed full-packet capture

files. The device service evaluation is an active approach that scans the IoT VLAN once

every week. The scanner collects the results and saves them to a managed cloud service.

We use Tenable Nessus, a commercial cloud-managed scanner. The mobile app binary

analysis requires specialized reverse engineering and analysis pipelines. We initially semi-

automated the Mobile Security Framework (MobSF) to analyze the IoT companion mobile

apps. Later, we partnered with Kryptowire, who gave us access to their cloud analysis plat-

form. We use their platform to analyze the companion mobile apps and collect the results

automatically. Lastly, we semi-automated the scanning task through Tenable Nessus for

cloud scanning. However, we observed many IoT devices churn through different cloud

backends over time, requiring continuous extraction, manual labeling, and scanning. We

could not scale this process and opted to conduct a single scan based on a manual effort.

Moreover, we received requests from some cloud backend owners to exclude their back-

ends from the scans, which we manually removed.

Device Functional Features

The deployed devices are in an idle state most of the time. We manually exercise certain

features on each device during the evaluation to induce network activity or for security

testing. For example, when we want to study the control network paths for a lightbulb,

we would turn it on/off and change the brightness and color. We then analyze the network

42

traffic to see if the mobile app communicated directly with the device on the IoT VLAN

or through a cloud backend (across the internet). Moreover, once we identify the path

from the control point to the device, we would exercise the functions again but attempt

to intercept the communication. This functional device testing allows us to evaluate the

security between different components. We document the time for each experiment and

analyze the corresponding data collection in the network traces offline.

Challenges and Limitations

Building a home-based IoT testbed presented many challenges, including power provision-

ing, device deployment, firmware updates, idle-to-off state, emulating a natural household

environment, and testbed maintenance. Typically devices’ power source can be directly

powered by a wall socket. When deploying a large number of devices, we require power

provisioning. This provisioning entails the allocation of power sockets and amperage. Most

home-based IoT devices typically operate at a 5V or 12V and draw a current of 0.5A to 2A

in the United States. However, some devices with heat elements such as Belkin WeMo

Crockpot can peak to five amperages. We had our facility modify the room power source to

allocate 30 amperages per 12 devices. We have 120 amperages dedicated to the IoT testbed

to maintain and avoid power interruption.

Power Provisioning. Some devices require specialized power supplies, such as smart

doorbells, thermostats, and door locks. Door locks are mostly battery-operated, which

requires constant monitoring and battery replacement. Smart thermostats like the Nest re-

quire unique power brick to supply power to the device, and the device must be connected

to an HVAC system to operate. We address these issues using a breadboard to hard wire

the power supply and a standalone relay emulating an HVAC system. Similarly, we used

a power brick for smart doorbells that output the appropriate voltage and amperage range

and hard wire it to the device using a breadboard. Lastly, smart lightbulbs use non-standard

power sockets that we had to account for in our budget. We purchase several lamp polls

43

with multiple lightbulb reciprocals to accommodate multiple smart lightbulbs under one

poll.

Device Updates. Tracking device updates presents an additional challenge. In our initial

onboarding process, we turn off automatic updates; however, some devices do not allow

users to turn off automatic updates. When a device updates, the behavior of the device

can change, and prior observed behavior or vulnerabilities may no longer be visible. The

updates make the security evaluation less reliable because we cannot repeat the assessment

and observe the same results. One potential solution is to block internet access for the

device until we scan the services on the device. However, some devices will only activate

once they can reach the internet. Another potential solution includes adding the firmware

download site to a blocklist to make the device fail in the update process deliberately. We

did not implement any of these solutions, but we document them for future iterations of the

testbed.

Natural Household Environment. The deployed devices are in a lab with very little foot

traffic. This setting reduces the activities around the devices and, therefore, may not rep-

resent a natural household environment. Specifically, many devices have an idle-to-sleep

process meant to conserve power when they are not actively used. For example, many

smart TVs will turn off when idle. Other devices require activation for them to work, like

smart vacuums. To address these challenges, we would repeat music or a movie on the

smart TV to keep it from sleeping. However, this approach creates additional traffic on the

network, which may mask the idle behavior of the smart TV. For devices requiring activa-

tion, we created a schedule to activate and perform their function. Other devices require

physical interaction to activate their functionality, like home assistants. A potential solu-

tion would be to play a recorded message to voice-enabled devices or instrument the power

through metered power distribution units to activate the devices. We did not implement

those solutions and document them here for future iterations.

Ongoing Maintenance. Lastly, the ongoing maintenance of the lab is cumbersome and

44

requires due diligence. For example, the testbed requires various approaches to address the

abovementioned challenges. As the testbed scales, each custom solution requires monitor-

ing services to ensure they do not fail. With the smart TV playing music, YouTube will

periodically prompt the user if they are still there. Most video streaming services like Net-

flix have similar features. Moreover, device monitoring is complex because not all devices

have the same network behavior or network services we can check via a network probe.

Sometimes, the device may be powered but does not have connectivity due to wireless

congestion, for example. Network monitoring will report that the device is offline, and we

will only identify the problem if we manually inspect the device. Battery-operated devices

require a periodic manual inspection to replace the batteries when needed. We have yet

to identify an efficient solution to this problem and currently use a manual approach to

maintain the testbed.

3.1.2 Evaluation Procedures

We define a threat model for evaluating the security of deployed devices. Specifically,

we assume several scenarios including, a nearby attacker, an on-LAN attacker, an on-path

attacker (dubious Internet Service Providers (ISPs)), and a remote attacker. These threat

models will become more relevant in chapter 6. For each IoT component, we use specific

tools to evaluate their security. With the exception of network communication, Table 3.1

shows that the evaluation is mostly automated because we rely on automated commercial

and open-source tools.

Device

We use Tenable Nessus Scanner [154] to scan devices for service discovery, service pro-

filing, and vulnerability assessment. Nessus Scanner annotates the CVE [155] information

with the versions of running services and provides a summary of their security state. Nessus

Scanner uses the CVSS [156] scoring system to rate the severity of the discovered vulnera-

45

bility on a scale from one to ten and categorizes them into low, medium, high, and critical.

We consider any classification of the categories high or critical by the CVSS scoring system

as problematic and note it in Table 3.3.

Mobile App

We used MobSF [157], Qark [158], and services from Kryptowire [159] to statically and

dynamically evaluate each mobile application for the IoT devices. We looked at both the

Android and the iOS applications and presented the vulnerable of the two 1 in Table 3.3.

There are 42 devices that have a companion mobile application. We analyzed a total of

83 mobile applications of which 41 are Android and 42 are iOS. We evaluate the apps for

permissions and permission use (over-privilege), embedded secrets (passwords, API keys,

etc.), and programming errors (incorrect use of cryptographic functions).

Cloud Endpoints

We used Nessus Scanner to discover, profile, and assess running services on the cloud

endpoints. We classified each domain into one of four categories: first-party, third-party,

hybrid, and unknown. First-party refers to cloud-based services that run on the vendor’s

infrastructure, third-party refers to subscription services like Content Delivery Network

(CDN), hybrid refers to cloud-based infrastructures (IaaS), like Amazon AWS or Microsoft

Azure, that host IoT cloud services, and Unknown refers to unclassified infrastructure due

to ambiguity. For each cloud endpoint, we evaluated the running services and TLS/SSL

configurations, if applicable.

Network Communication

We used Nessus Network Monitor [154], ntop-ng [160], Wireshark [161], and sslsplit [162]

to profile the communication edges for each device. We manually inspected traffic and

1The portal contains the data for both platforms iOS and Android.

46

tested them for Man-in-the-Middle (MITM) attack using sslsplit. IoT devices connect

with their components using IP-based channels, represented as edges in the model graph

(see Figure 3.2). We classified three types of connections, device-to-cloud (D-C), mobile

application-to-device (A-D), and mobile application-to-cloud (A-C). We observed 43 de-

vices connecting to cloud endpoints (D-C), 35 mobile applications connecting to cloud

endpoints (A-C), and 27 mobile applications connecting to devices through the local area

network (LAN) (A-D). We categorized these connections into five application protocols,

namely: DNS, HTTP, UPnP, NTP, and custom. The custom category refers to device-

specific application protocols. Smart devices utilize many protocols, but in our lab, we

only observe the five listed above.

3.2 Results

3.2.1 Device

We evaluated 45 devices and found a total of 84 running services and 39 issues related to

those running services. We found devices with running services such as SSH, UPnP, HTTP

web server, DNS, Telnet, RTSP, and custom services. Many devices configure TLS/SSL for

their services, but their configurations had several issues. For example, the certificates were

self-signed, they supported weak to medium ciphers, they used short TLS/SSL keys, they

permitted the use of vulnerable versions of SSL (v2, v3, and CBC mode), and had expired

certificates. Further, some devices ran outdated and vulnerable services that allowed remote

code execution, leaked sensitive information, and ran unauthenticated services.

For example, the Insteon hub runs a web server with TLS on port 443 and listens on

port 22 for SSH connections. The certificate used for the TLS connection is expired and

self-signed, while the TLS service allowed for weak ciphers like RC4 and insecure pro-

tocols like SSLv3. Similarly, the Wink 2, Sonos Speakers, nVidia Shield, Google Home,

Samsung SmartTV, and Samsung SmartThings all had issues with their certificates or TL-

S/SSL configurations. The Wink 2 and Sonos both used short SSL keys of size 1024 bits.

Other devices like D-Link DCS5009L, Bose SoundTouch 10, Chinese webcam, and Securifi

Almond lacked encryption for service authentication, which allows any device on the LAN

to snoop.

Devices that run UPnP services have no authentication or security built in and by default

are insecure. Devices like the MiCasaVerda VeraLite, Wink 2, Sonos, Bose SoundTouch 10,

Samsung SmartTV, Logitech Harmony, and Roku all run UPnP services that allow anyone

on the LAN to control the device. Specifically, the MiCasaVerda VeraLite uses vulnera-

ble versions of the UPnP service libraries that have public exploits, such as libupnp 1.6.18

(CVE-2012-5965), dropbear 2016.72 (CVE-2012-0920), and UPnP RunLua (CVE-2013-

4863). A complete list of CVEs with CVSS scores of high and critical are found in Ta-

ble 3.5. We found 16 devices with running services that had no issues and ten devices

that did not expose running services. For example, the Nest camera uses a push/pull client

approach, which limits the exposure of running services.

Findings. The device evaluation found issues related to the device setup, software up-

dates, and service configurations. Additional evaluation results for each device are found

in Table 3.4.

3.2.2 Mobile

We found that 39 devices had one or more issues related to permissions, sensitive data, or

incorrect use of cryptography. We observed 24 over-privileged mobile applications that ask

for permissions on the mobile device that are not used by the application code. As for sensi-

tive data, we found 15 mobile applications to have hard-coded sensitive data like API keys

for Google Geocoding, Google Maps, fabric.io, HockyApp, Localytics, Microsoft Virtual

Earth, Umeng, and other credentials to cloud and device services. We found 17 mobile ap-

plications that did not implement cryptographic protocols securely or had hard-coded static

keys and initialization vectors (IVs). The cryptographic implementations relied on older or

broken algorithms like AES-128 and MD5 hash, respectively. Other applications did not

48

enforce SSL and allowed for communication over unverified connections.

Findings. The evaluation identifies issues with inherent trust between mobile applications

and devices that the systematized work neglects. A summary of our mobile application

evaluation is provided in Table 3.3 and additional details are found in Table 3.6.

3.2.3 Cloud

On the IoT network, we observed over 4,000 cloud endpoint domains across the 45 de-

vices. We classified 950 domains as first-party, 1287 domains as third-party, 630 domains

as a hybrid, and 1288 domains as unknown. The unknown category includes unattributable

domains for a device. For example, the Hulu application running on a Smart TV uses an

AWS CloudFront domain, which gives us no indication if the domain belongs to Hulu or

the Smart TV. We found 18 devices that used outdated services, leaked sensitive infor-

mation, lacked encryption for authentication, or ran a vulnerable service. We found eight

devices using cloud endpoints that are vulnerable and have public exploits. Additionally,

seven devices were authenticated with cloud endpoints in clear text. We found 26 devices

using cloud endpoints that have TLS/SSL configuration issues, like self-signed certificates,

domain name mismatch, and support for vulnerable versions of TLS/SSL protocol. We

found ten devices that used misconfigured cloud endpoints, which allowed for sensitive

information disclosure like file paths and running processes on the server. We saw four de-

vices use cloud endpoints that ran outdated operating systems with expired vendor support

(Ubuntu 10 and Ubuntu 12).

Findings. The evaluation found issues with the deployment of unsupported legacy OS

and sensitive information disclosure. We summarize our findings in Table 3.3 and provide

additional details in Table 3.7.

3.2.4 Network

We found 41 devices used the DNS protocol, where 6 of them did not respect the network-

configured DNS recursive server, and instead used Google’s or OpenDNS’s servers. We

found that 38 devices used the HTTP protocol and 34 of them used TLS/SSL sessions

(HTTPS). We found 21 devices that used the UPnP protocol either by sending a multicast

SSDP request or responding to an SSDP request. Additionally, we saw 25 devices that

used the NTP protocol for time synchronization. We observed 28 devices that used custom

protocols that were specific to a device. For example, Google products (OnHub, Home,

and Home Mini) all sent traffic to Google’s servers using a custom protocol on ports 5228

and 5223.

The majority of the devices used encryption over the Internet (D-C). We found 25

devices that encrypted all their communication, 15 devices that partially encrypted their

communication, and two devices that did not encrypt their communication to the cloud

endpoints. As for the mobile applications (A-C), 24 encrypted all their communication, ten

partially encrypted their communication, and one did not encrypt its communication to the

cloud endpoints. On the LAN (A-D) we observed five devices that encrypted their com-

munication, two devices that partially encrypted their communication, and 20 that did not

encrypt their communication. A few devices, such as the Chinese webcam, did not have a

companion mobile application but provided an HTTP interface that allows any device on

the LAN to authenticate and interact with.

In addition to the communication analysis, we actively MITM attacked every commu-

nication edge to test their susceptibility. We found in total 20 devices had one or more of

their communication edges susceptible to a MITM attack. We found four device-to-cloud

(D-C) communications that were susceptible, two mobile application-to-cloud (A-C) com-

munications that were susceptible, and 20 application-to-device (A-D) communications

that were susceptible.

Findings. The evaluation finds that not all communication channels are secured and lack

50

endpoint verification. We found devices that leak usage information by forcefully using

third-party recursive DNS servers. Table 3.3 summarizes the device encryption and MITM

attack and additional details are found in Table 3.8.

3.3 Evaluation Cases

Our evaluation shows that some devices have a better security posture than others. In this

section, we take a look at three devices that we categorize based on their overall security

evaluation. We propose three categories: good, satisfactory, and needs improvement, which

highlight good security practices and shortcomings.

3.3.1 Good: Withings Home

Functional Features. The Withings Home device is a camera paired with an air quality

sensor. The device has a mobile companion application, integrates with cloud endpoints,

and communicates over the Internet and the local network. The device exposes mDNS ser-

vice, which allows zero-configuration protocols to find and configure the device (i.e. Ap-

ple’s Bonjour). The device uses a low-energy protocol, Bluetooth, to configure the device

initially, then switches to IP communication. Device updates are not applied automatically

but require user consent.

Assessment. We found no issues with the mDNS service running on the device. The

companion mobile application correctly utilizes secure storage facilities to store sensitive

data, correctly uses cryptographic protocols, and has proper permission provisioning. The

majority of the cloud infrastructure is self-hosted by Nokia and runs services to enable user

notifications and control. The network communication between device-to-cloud, app-to-

cloud, and app-to-device uses full encryption and is not susceptible to MITM attacks. The

device did authenticate in clear-text (an insecure practice) across the Internet to associate

the device with the cloud management interface that runs an XMPP server 2.

2endpoint located at: xmpp.withings.net:5222

51

3.3.2 Satisfactory: Nest Cam

Functional Features. The Nest Cam is an indoor camera that senses motion, records

video, and notifies users of activities. The device uses forced configuration, which means

users have to configure and set up their device before it can operate. The camera uses the

Bluetooth protocol to configure the device via the mobile application, which pairs using

a pin/barcode located on the back of the camera. The camera does not utilize the local

network to control the device, all of the activities and controls operate through the cloud

endpoints. Finally, updates to the device are applied automatically with no user consent,

ensuring the device always has the latest running firmware.

Assessment. The Nest Cam does not expose any services but uses a client model, where

the device acts as a client that communicates directly with the cloud endpoints. The lack of

exposed services running on the Nest Cam considerably shrinks the attack vector and limits

an IP-based attacker. The Nest Cam uses certificate pinning on the device, which verifies

and validates the device to cloud communication is secure. The device setup and configu-

ration require mobile application pairing via Bluetooth, which both ensures the proximity

of the end-user and limits remote attack vectors. The mobile application manages all Nest

products, including the Nest Cam, which requests access to the microphone, camera/pho-

tos, geolocation, and other sensitive services. The cloud endpoints fully manage the Nest

Cam, which means without Internet access the device is inaccessible. The Nest products,

in general, forcibly use the Google DNS recursive and ignore the DHCP configurations on

the local network. A savvy user can configure static routes on their gateway to redirect

DNS traffic toward their desired resolver.

3.3.3 Needs Improvement: MiCasa Verde VeraLite

Functional Features. The VeraLite is a smart-home Z-Wave-enabled controller that can

monitor and control low-energy sensors and other devices around the home. The device

pairs through a cloud portal using a pre-printed pin on the back of the device. The VeraLite

52

requires manual updates, but the device notifies users of the availability of new updates.

The device exposes four services including a web, DNS, UPnP, and SSH server. The mo-

bile device requests excessive permissions like calling, controlling the phone network state

(on/off/airplane mode), and access to the camera. The VeraLite is a discontinued product

and is no longer offered by the vendor.

Assessment. The VeraLite device provides a hardened setting that disables many of the

running services on the device, but they are on by default. The hardened mode forces device

management and monitoring from cloud endpoints. The device has several exploitable

vulnerabilities as illustrated by Table 3.5. The UPnP services use a vulnerable version of the

libupnp library, and the SSH services use a vulnerable dropbear (2016.72) implementation.

The configuration of the SSH server supports Cipher-Block-Chaining (CBC) mode,

specifically 3des-cbc, aes128-cbc, and aes256-cbc, which an attacker can exploit to recover

the plaintext from the ciphertext. The DNS service is configured to allow queries for third-

party domains that do not have the recursion bit set; hence allowing attackers to snoop

on the DNS cache. The mobile application requires users to establish an account with

the Vera vendor, which allows end-users to manage their controllers. The device does not

use certificate pinning, which leaves the deployment susceptible to MITM attacks. The

cloud endpoints use clear-text authentication, run exploitable services, expose sensitive

information, and run unsupported operating systems.

3.4 An Integrated Security Evaluation

In Chapter chapter 2, we learned that most security evaluation approaches for IoT focus

on only a few components. However, our proposed approach provides a more compre-

hensive evaluation that includes all components. So far, we have evaluated each device’s

components and demonstrated that security vulnerabilities could occur in one or more of

them. In the previous section, we discussed three cases of devices, with a particular focus

on the network service component. In the following sections, we will demonstrate how

53

our approach can identify more security vulnerabilities in IoT deployments by integrating

the security evaluation of all components. To accomplish this, we will present an empiri-

cal case study of the Belkin Netcam device, including its mobile app, cloud backends, and

network communication.

3.4.1 Device

The Belkin Netcam runs a Linux-based Operating System (OS) based on Linux Kernel 2.6.

The device exposes an HTTP server that listens on ports 80 and 81. The HTTP service pro-

vides unauthenticated UPnP functions that users on the local network can invoke. When

users set up the device, they are guided through a configuration process using the compan-

ion mobile application. This configuration process includes connecting the device to the

local wireless network to access the internet. The user configures the device by connecting

their mobile device to a wireless access point that the Belkin Netcam broadcasts. Users

authenticate to the wireless access point using a four-digit pin, which is publicly known.

To configure the device, the user must also authenticate using the credentials admin/admin

(username/password) that are also publicly known. The device automatically checks for

updates and notifies the user if new firmware is available. However, for an update to occur,

the user must manually consent to update the device.

3.4.2 Mobile App

The Belkin Netcam companion mobile application supports both Apple iOS and Android

devices. Our analysis of the Apple iOS application found no issues related to permissions,

embedded secrets, or programming errors. For the Android mobile application, we found

an embedded application key for Localytics. Localytics is an application analytics software

that tracks application usage and provides in-depth insights to help developers improve

engagement. The application key allows anyone to authenticate to the Localytics remote

server and spoof activities. However, regarding the security impact on the Belkin Netcam

54

deployment, the app key does not expose any security flaws.

3.4.3 Cloud Endpoints

The Belkin Netcam device communicates with 79 different backends. These backends

include 13 first-party, 63 third-party, one hybrid, two unknown, and two direct IP ad-

dresses. First-party backends are servers owned and operated by Belkin, and third-party

backends provide analytics, ads, and telemetry services through third-party companies. Hy-

brid servers are backends that reside on public cloud infrastructure, AWS, Azure, and GCP,

but host applications developed by Belkin. We could not label two backends and two IP

addresses observed in the Belkin Netcam evaluation. Our evaluation of first-party backends

shows that the Belkin Netcam cloud services contain several security flaws ranging from

medium to critical in CVSS. Specifically, one server backend contained a JBOSS unautho-

rized access and remote code execution flaw that we categorize under exploitable services

and information disclosure. Moreover, we found some backends to expose their Apache

tomcat configuration files, which can potentially contain sensitive information about the

server application. We found other services that use basic HTTP authentication without

TLS/SSL protection, which allows an on-path attacker to view the credentials. We found

that services that use TLS/SSL support SSL versions 2 and 3, which allows an attacker to

downgrade secure connections and decrypt the encrypted sessions. Lastly, some backends

expose SSH service that supports weak authentication algorithms that attackers can poten-

tially abuse. These findings directly impact the Belkin Netcam deployment and potentially

give an attacker control over all devices that use the same backends.

3.4.4 Network Communication

The Belkin Netcam uses several network protocols, including DNS, HTTP/HTTPS, UPnP,

and custom protocols. We found three types of communications, namely mobile app-to-

device (A-D), device-to-cloud (D-C), and mobile app-to-cloud (A-C). For each communi-

55

cation type, we evaluate MITM attacks to assess the manipulation of network communi-

cation. Additionally, we look at each communication and assess if they are encrypted (not

visible to an on-path attacker). The Belkin Netcam A-D communications do not use en-

cryption, which exposes them to MITM attack and information disclosure. The D-C com-

munication uses encryption and is not susceptible to MITM attack. We attempted a MITM

attack by serving a fake certificate to the device, but the device raised an unknown/untrusted

CA error and failed to connect to the cloud endpoints. However, we found that the Belkin

Netcam streams unencrypted video on port 5338, which allows anyone on the network path

to view and record video footage. These security flaws allow different attacks related to

privacy and information disclosure.

3.4.5 Attack Paths

We observe several security flaws impacting the Belkin Netcam device, mobile app, cloud

backends, and network communication. In traditional security evaluation of IoT deploy-

ments, the device and network communication components are the only two considered,

which creates a blind spot in the security evaluation results. Our approach has shown that

cloud backends and mobile applications contain security flaws. Furthermore, the cloud

backend component analysis uncovers serious flaws that not only does it allow attackers to

compromise one deployment but many. Numerous flaws can give attackers control of the

IoT deployment or disclose sensitive information about the users or systems depending on

the IoT deployment. For example, in the case of the device, a nearby attacker can hijack

the setup process by configuring the device before the legitimate user allowing complete

control of the device. Even if we assume a secure device deployment, a user may deploy

the device in an open network that gives open access to any user. An attacker on the local

network can abuse the unauthenticated UPnP service found on the Belkin Netcam to hijack

the device. Furthermore, the attacker on the local network can also view video footage

from the camera directly or expose the video stream to the internet.

56

For the mobile application, no direct attack vectors would give an attacker control over

the IoT deployment. However, an attacker can use the hard-code app API key for the ser-

vice Localytics to poison the results and feed false information to the Belkin Localytics

account. The network communication appears to allow local network attackers to intercept

and manipulate traffic from the mobile application to the device. The communication be-

tween the mobile app and the device does not use encryption. The cloud backends have

critical security flaws that can give an attacker control over many Belkin Netcam deploy-

ments. For example, an attacker can exploit the JBOSS remote code execution flaw to gain

access to the backend server and use it to abuse all Belkin Netcam devices that connect to

that server. Using our framework, we can systematically map out the entire attack surface

for an IoT deployment and find more security flaws than a traditional security evaluation

approach. In chapter 6, we will use these findings to provide a more holistic risk assessment

of IoT deployments.

3.5 Proposals

Our large-scale security evaluation of diverse devices gives a unique perspective into good

and poor security practices. We found cloud-managed devices to be, in general, more

secure. Moreover, devices automatically updating without involving the user tend to be

more secure and contain fewer flaws. Lastly, device communication over the local network

appears to have a lax security posture, which can allow an attacker to compromise the

target device. Based on these observations, we discuss several mitigation strategies and

recommendations.

3.5.1 Mitigations

Device. Affected devices should patch through secure channels to ensure the integrity of

the update. Vendors can limit running services on IoT devices and follow a client ap-

proach where the device is managed through cloud endpoints using push/pull requests.

57

Device configurations can be remedied using a configure-before-operable approach, where

the device will not activate without proper configuration and setup. Many devices follow

a configure-before-operable approach, and it should be mandated by industry standards.

Finally, endpoint (cloud or mobile) verification ensures that only authenticated parties can

interact with the device. Vendors can limit the interaction to a sandboxed environment

and assign temporal fine-grained access control for required resources. Trusted endpoints

should not operate with unfettered access, and devices should enforce authentication time-

outs for all parties. Modern home-based IoT devices are equipped with enough compute

power ([163, 164]) to apply many of the suggested mitigations, contrary to the popular

belief that they are under-powered and energy-constrained devices.

Mobile. Over-privileged applications can have privacy concerns regarding users’ activities.

Mobile platforms should implement a system to derive permissions based on functional

analysis of the application and grant permissions temporarily at runtime. Further, sensitive

information, such as API keys, should be derived when the application is installed on the

mobile device and stored in an encrypted key store. Cryptographic protocols are difficult to

implement correctly, and therefore developers should rely on mature libraries with proper

implementations. Finally, developers should adhere to the recommended guidelines that

accompany these libraries.

Cloud. Managed platforms and configuration management tools can alleviate the vulnera-

ble services on the cloud endpoints. Vendors should utilize commercial platforms that are

managed by experienced professionals. Similarly, automating cloud endpoint configuration

through API integration can reduce the chances of misconfiguration. For example, Let’s

Encrypt [165] can automatically renew certificates for servers. Cloud endpoints should

not support insecure protocols, but instead, they should verify both endpoint devices and

mobile applications.

Communication. Network communication between all IoT components should adhere to

the same security standards (LAN or Internet). Vendors must use the latest secure pro-

58

tocols, offer limited functionality for backward compatibility, enforce protocol upgrade

requirements, and verify endpoints. Endpoint verification will ensure MITM attacks are

not successful and protect the integrity of the communication. Vendors should default to

a fail state if endpoints are not verifiable. Additionally, vendors can provide an option to

install custom certificates in IoT deployments for transparency.

3.5.2 Stakeholders

Vendors. Vendors have to get the security requirements correct for every component at

every level, including the design, implementation, and deployment of IoT systems. Our

evaluation shows that many vendors strive for device security but often fail with due dili-

gence. Realistically, many vendors do not have all the expertise to develop, manage, and

deploy these heterogeneous technologies. Vendors that lack expertise in specific areas can

outsource to specialized third-parties to develop their products.

End-Users. Home-based IoT deployments transform simple home-based networks into

complex enterprise-like networks. End-users can follow good security practices by config-

uring devices to use encryption, disable remote administration features, and segment their

network. Most importantly, consumers can influence vendors by purchasing privacy-aware

and secure devices. Our portal is meant to give an objective security assessment of IoT

devices and allow consumers to make informed decisions.

Other Parties. Internet Service Providers (ISPs) are not direct stakeholders, but the ubiq-

uity of home-based IoT devices affects the operation of their networks. Much of the traffic

seen by the ISPs will be encrypted, but ISPs can identify devices by destinations, service

ports, and communication frequency. ISPs can potentially implement technical remedies

to block certain ports, but legal policies are needed to intervene. These decisions can pose

policy and compliance disputes due to the global nature of IoT and international jurispru-

dence [166]. ISPs can offer their expertise in running and operating residential Internet

networks that can help identify implications around home-based IoT deployments.

59

Cloud providers offer infrastructure-as-a-service to many IoT vendors and have years of

experience in developing, running, and securing cloud infrastructures and platforms. Their

offerings are economical and practical for vendors, but they do suffer from outages occa-

sionally [63]. Cloud providers are playing an important role in securing IoT deployments

and should continue to offer tailored cloud services that alleviate security responsibilities

from vendors.

3.5.3 Recommendations

Measurements. We recommend additional measurements for inter-device communication,

mobile application-to-device interaction, and trust relationship between IoT components.

Inter-device communications (device-to-device and mobile application-to-device) are not

well studied within the LAN. Many IoT systems, like home assist devices, auto-discover

and interact with other devices on the LAN without users’ consent, which warrants fur-

ther investigation to understand the security and privacy implications as a result of these

communications. Further, conducting longitudinal studies can expose latent flaws that are

otherwise difficult to observe without temporal analysis.

Standards. Many well-established vendors have put forth standards for IoT systems, but

there is no consensus among the community. Vendors and researchers should combine their

expertise to jointly draft industry standards that provide techniques to address common

mistakes found in home-based IoT systems. Some home-based IoT systems have cyber-

physical components, like connected ovens, fridges, and water heaters. These classes of

IoT systems must be regulated by safety mandates and code standards to ensure no physical

harm can result from their abuse or component failure. The government must play an active

role in the development of these standards to protect consumers’ safety and privacy.

60

Table 3.3: This table is a summary of each evaluated device per graph component in Fig-
ure 3.2. The device section summarizes the number of running services and issues found.
The mobile application summarizes excessive permissions, sensitive data, or incorrectly
use of cryptographic protocols. The communication category summarizes the susceptibil-
ity to MITM attack and the communication channel state as fully encrypted (), partially
encrypted (G#), or not encrypted (#).

Device
Device Services

Table 3.4
Mobile Application

Table 3.6
Cloud Endpoints

Table 3.7
Communication

Table 3.8

Running
Services

Security
Issues

Over-
priviliged

Sensitive
Data

Crypto
Issues

SSL
Issues

Service
Issues MITM Encryption

Amazon Echo 1 0 ✓ ✓ ✓
Amazon Fire TV 1 0 ✓ ✓ ✓ G#
Apple HomePod 4 0 — — — ✓
Apple TV (4th Gen) 3 0 — — — ✓
August Doorbell 1 0 ✓ ✓ ✓ ✓ ✓ G#
Belkin Netcam 1 1 ✓ ✓ ✓ ✓ G#
Belkin WeMo Crockpot 0 0 ✓ ✓ ✓ ✓ G#
Belkin WeMo Link 1 1 ✓ ✓ ✓ G#
Belkin WeMo Motion 1 1 ✓ — — ✓ G#
Belkin WeMo Switch 1 1 ✓ ✓ ✓ ✓ G#
Bose SoundTouch 10 4 1 ✓ ✓ ✓ ✓ ✓ ✓ G#
Canary 0 0 — — — ✓
Caseta Wireless 2 0 ✓ — — ✓ G#
Chamberlain myQ
Garage Opener 1 0 ✓ ✓

Chinese Webcam 4 1 — — — ✓ ✓ #
D-Link DCS5009L 3 2 ✓ ✓ ✓ ✓ #
Google Home 5 2 ✓ ✓ — — ✓ G#
Google Home Mini 5 2 ✓ ✓ — — ✓ G#
Google OnHub 1 0 ✓ ✓ — — G#
Harmon Kardon Invoke 5 1 ✓ ✓ ✓
Insteon Hub 4 6 ✓ ✓ ✓ ✓ ✓ #
Koogeek Lightbulb 2 0 ✓ ✓ — —
LIFX Virtual Bulb 0 0 ✓ ✓ ✓ ✓ G#
Logi Circle 0 0 ✓ ✓ ✓
Logitech Harmony 2 1 ✓ — — G#
MiCasaVerde VeraLite 4 6 — — — ✓ ✓ ✓ G#
Nest Cam IQ 0 0 ✓ ✓ ✓ ✓
Nest Camera 0 0 ✓ ✓ ✓ ✓
Nest Guard 0 0 ✓ ✓ ✓ ✓ ✓
Netgear Arlo 0 0 ✓ ✓ ✓ ✓
nVidia Shield 2 3 — — — — — G#
Philips HUE 2 0 ✓ ✓ — — ✓ G#
Piper NV 3 0 — — — ✓ ✓
Ring Doorbell 0 0 ✓ ✓
Roku 4 2 0 ✓ ✓ ✓ ✓ ✓ G#
Roku TV 2 0 ✓ ✓ ✓ ✓ ✓ G#
Roomba 1 0 ✓ ✓ ✓ — — G#
Samsung SmartThings 1 1 ✓ ✓ ✓ ✓
Samsung SmartTV 4 1 ✓ — — ✓ G#
Securifi Almond 2 1 ✓ ✓ — — G#
Sonos 3 3 ✓ — — ✓ G#
TP-Link WiFi Bulb 1 0 ✓ ✓ — —
TP-Link WiFi Plug 0 0 ✓ ✓ — —
Wink 2 Hub 4 4 ✓ ✓ ✓ — — ✓ G#
Withings Home 1 0 ✓ ✓

61

Table 3.4: Device Evaluation.

Device System Services System Setup

Detected OS
Running
Services

Issues
Found Pairing Config. Upgrade

Insteon Hub Linux 2.6 4 6 Wired+Pin F C
MiCasaVerde
VeraLite 4 6 Cloud+Pin D M

Wink 2 Linux 2.6 4 4 Wired D M
Sonos Linux 3 3 Wired D C
nVidia Shield Linux 2.6 2 3 Wired D M
Google Home Linux 3.3 5 2 Wifi F A
Google Home Mini Linux 3.3 5 2 Wifi F A
D-Link DCS5009L 3 2 Wired D M
Harmon Kardon
Invoke Linux 3.3 5 1 LE F A

Bose
SoundTouch 10 Linux 2.6 4 1 LE F C

Chinese Webcam Linux 2.6 4 1 Wired+HTTP D N/A
Samsung SmartTV Linux 4.8 4 1 On-Screen D M
Logitech Harmony 2 1 LE F M
Securifi Almond Linux 2.6 2 1 Wired D M
Belkin Netcam Linux 2.6 1 1 Wifi+Pin F C
Belkin WeMo
Link 1 1 Wifi+Pin F C

Belkin WeMo
Motion 1 1 Wifi+Pin F C

Belkin WeMo
Switch 1 1 Wifi+Pin F C

Samsung
SmartThings Linux 2.6 1 1 Wired F C

Apple HomePod FreeBSD 6 4 0 LE F C
Apple TV
(4th Gen) tvOS 3 0 Wired F C

Piper NV 3 0 Wifi F A
Caseta Wireless Linux 2.6 2 0 Wired F M
Koogeek Lightbulb 2 0 LE+Pin D C
Philips Hue Linux 2.6 2 0 Wired+Button F C
Roku 4 Linux 3.3 2 0 Wired D M
Roku TV 2 0 Wired D M
Amazon Echo Linux 1 0 Wifi F A
Amazon Fire TV Linux 2.6 1 0 Wired D M
August Doorbell Linux 2.6 1 0 Wifi F M
Chamberlain myQ
Garage Opener 1 0 Wifi F M

Google OnHub Linux 4.8 1 0 Wired F A
Roomba 1 0 Wifi F M
TP-Link Wifi Bulb 1 0 Wifi D M
Withings Home 1 0 LE F C
Canary 0 0 Wifi F C
LIFX Bulb 0 0 Wifi D M
Logi Circle 0 0 LE F A
Nest Cam IQ 0 0 Wired F A
Nest Camera 0 0 LE+Pin F A
Nest Guard 0 0 Wired F A
Netgear Arlo 0 0 Wired F M
Ring Doorbell 0 0 Wifi F M
TP-Link Wifi Plug 0 0 Wifi F M
Belkin WeMo
Crockpot 0 0 Wifi+Pin D C

(F)orced configuration change when device is setup; (D)efault device configuration is acceptable and
allows device to operate. (C)onsent by the user is required for the device to upgrade; (A)utomatic
updates are applied without user intervention; (M)anual device update via user request. N/A means
the category is not applicable.

62

Table 3.5: List of devices and their CVEs with CVSS score of Critical and High.

Device CVE CVSS

MiCasa Verda
VeraLite

CVE-2012-5958, CVE-2012-5959,
CVE-2012-5960, CVE-2012-5961,
CVE-2012-5962, CVE-2012-5963,
CVE-2012-5964, CVE-2012-5965,
CVE-2013-4863

Critical

CVE-2012-0920 High

Wink 2 CVE-2016-7406, CVE-2016-7407 Critical
CVE-2016-7408 High

Table 3.6: Mobile Application Evaluation.

Device
Mobile Application Overprivileged Sensitive

Data
Crypto
IssuesName Platform Version

Securifi Almond com.securifi.almond iOS 3.5.6 ✓ ✓

LIFX Virtual Bulb com.lifx.lifx iOS 3.8.6 ✓ ✓

Ring Doorbell com.ring iOS 4.1.13 ✓ ✓

Roku TV
Roku 4

com.roku.ios.roku iOS 4.2.3 ✓ ✓

Netgear Arlo Camera com.netgear.arlo iOS 2.4.8 ✓ ✓ ✓

TP-Link WiFi Plug
TP-Link WiFi Bulb

com.tplink.kasa-ios iOS 1.11.1 ✓ ✓

Chamberlain myQ Garage Opener com.chamberlain.myq.chamberlain iOS 6216.0.0 ✓

Google Home Mini
Google Home

com.google.Chromecast iOS 1.28.508 ✓ ✓

Apple HomePod — iOS — — — —
Wink 2 com.quirky.wink iOS 6.8.0 ✓ ✓

Google OnHub com.google.android.apps.access.wifi.consumer Android
jetstream
BV10127 ✓ ✓

Samsung SmartThings com.smartthings.android Android 2.13.0 ✓ ✓ ✓

Philips HUE com.philips.lighting.hue2 Android 2.19.0 ✓ ✓

Insteon Hub com.insteon.insteon3 Android 1.9.8 ✓ ✓

Sonos com.sonos.acr Android 8.3.1 ✓

Nest Camera
Nest Cam IQ
Nest Guard

com.nest.android Android 5.17.0.31 ✓ ✓ ✓

Belkin WeMo Motion
Belkin WeMo Switch
Belkin WeMo Link
Belkin WeMo Crockpot

com.belkin.wemoandroid Android 1.19.0 ✓

Amazon Echo com.amazon.dee.app Android 2.2.1615.0 ✓ ✓

Belkin Netcam com.belkin.android.androidbelkinnetcam Android 2.0.4 ✓

Amazon Fire TV com.amazon.storm.lightning.client.aosp Android 1.0.13.18 ✓ ✓

D-Link DCS5009L com.dlink.mydlinkunified Android 1.0.3 ✓ ✓

Logitech Logi Circle com.logitech.circle Android 2.3.2220 ✓

Canary is.yranac.canary Android 2.14.0 — — —
Piper NV com.blacksumac.piper Android 1.4.0 — — —
Withings Home com.withings.home Android 1.5.3 — — —
MiCasaVerde VeraLite com.vera.android Android 7.25.47 ✓

August Doorbell Cam com.august.luna Android 6.1.4 ✓ ✓

Logitech Harmony com.logitech.harmonyhub Android 5.1.1 ✓

Caseta Wireless com.lutron.mmw Android 5.1.0 ✓

Bose SoundTouch 10 com.bose.soundtouch Android 17.170.82 ✓ ✓ ✓

Harmon Kardon Invoke com.microsoft.cortana Android 2.10.2.2135 ✓

Roomba com.irobot.home Android 2.3.1 ✓ ✓ ✓

Samsung SmartTV com.samsung.smartviewad Android 2.1.0.100 ✓

Koogeek Lightbulb com.tomtop.home Android 1.2.2 ✓ ✓ ✓

nVidia Shield — — — — — —
Chinese Webcam — — — — — —

63

Ta
bl

e
3.

7:
C

lo
ud

E
nd

po
in

tE
va

lu
at

io
n.

D
ev

ic
e

D
om

ai
ns

SS
L

Se
rv

ic
es

To
ta

l
1s

t
Pa

rt
y

3r
d

Pa
rt

y
H

yb
ri

d
U

nk
no

w
n

H
os

t
Se

lf
-

Si
gn

ed
D

om
ai

n
M

is
m

at
ch

V
ul

n
SS

L
O

ut
da

te
d

O
S

In
fo

rm
at

io
n

D
is

co
ls

ur
e

C
le

ar
te

xt
A

ut
h

E
xp

lo
ita

bl
e

Se
rv

ic
e

A
m

az
on

E
ch

o
22

1
15

19
1

3
12

17
✓

✓
—

—
—

—
A

m
az

on
Fi

re
T

V
17

4
10

0
17

14
43

99
—

—
—

✓
A

pp
le

H
om

eP
od

18
2

80
6

76
20

11
3

✓
✓

✓
—

—
—

—
A

pp
le

T
V

(4
th

G
en

)
43

9
17

0
14

18
8

67
38

✓
✓

—
—

—
—

A
ug

us
tD

oo
rb

el
l

55
7

12
34

2
32

✓
✓

✓
B

el
ki

n
N

et
ca

m
79

13
63

1
2

12
✓

✓
✓

✓
B

el
ki

n
W

eM
o

C
ro

ck
po

t
27

7
15

5
0

11
✓

✓
✓

✓

B
el

ki
n

W
eM

o
L

in
k

14
4

6
4

0
11

—
—

—
✓

✓
B

el
ki

n
W

eM
o

M
ot

io
n

24
7

12
5

0
9

—
—

—
—

—
—

—
B

el
ki

n
W

eM
o

Sw
itc

h
29

5
19

5
0

10
✓

✓
✓

B
os

e
So

un
dT

ou
ch

10
26

10
10

6
0

11
✓

✓
✓

C
an

ar
y

22
19

3
0

0
9

✓
—

—
—

—
C

as
et

a
W

ir
el

es
s

22
2

11
5

4
6

—
—

—
—

—
—

—
C

ha
m

be
rl

ai
n

m
yQ

G
ar

ag
e

O
pe

ne
r

1
1

0
0

0
1

✓
—

—
—

—
C

hi
ne

se
W

eb
ca

m
1

1
0

0
0

1
—

—
—

✓
D

-L
in

k
D

C
S5

00
9L

4
4

0
0

0
3

✓
—

—
—

—
G

oo
gl

e
H

om
e

42
29

3
0

10
14

—
—

—
—

—
—

—
G

oo
gl

e
H

om
e

M
in

i
40

27
3

0
10

17
—

—
—

—
—

—
—

G
oo

gl
e

O
nH

ub
24

24
0

0
0

15
—

—
—

—
—

—
—

H
ar

m
on

K
ar

do
n

In
vo

ke
12

8
0

10
8

5
15

9
✓

✓
✓

In
st

eo
n

H
ub

20
2

12
5

1
5

✓
✓

K
oo

ge
ek

L
ig

ht
bu

lb
1

0
1

0
0

0
—

—
—

—
—

—
—

L
IF

X
V

ir
tu

al
B

ul
b

3
2

1
0

0
1

✓
✓

—
—

—
—

L
og

ite
ch

H
ar

m
on

y
17

6
5

6
0

8
—

—
—

—
—

—
—

L
og

ite
ch

L
og

iC
ir

cl
e

34
1

15
8

5
17

8
0

20
✓

✓

M
iC

as
aV

er
de

V
er

aL
ite

74
1

30
43

0
40

✓
✓

✓
✓

✓
✓

N
es

tC
am

IQ
9

4
5

0
0

4
✓

—
—

—
—

N
es

tC
am

er
a

7
6

1
0

0
5

✓
✓

—
—

—
—

N
es

tG
ua

rd
14

6
6

2
0

4
✓

✓
N

et
ge

ar
A

rl
o

59
23

2
7

27
18

—
—

—
✓

nV
id

ia
Sh

ie
ld

26
1

23
17

7
3

58
24

—
—

—
—

—
—

—
Ph

ili
ps

H
U

E
27

14
8

0
5

11
—

—
—

—
—

—
—

Pi
pe

rN
V

42
24

16
2

0
16

✓
✓

✓
R

in
g

D
oo

rb
el

l
9

5
3

1
0

6
—

—
—

—
—

—
—

R
ok

u
4

23
1

37
17

7
4

13
28

✓
✓

✓
R

ok
u

T
V

22
6

36
14

4
6

40
28

✓
✓

✓
✓

R
oo

m
ba

11
2

5
4

0
5

✓
—

—
—

—
Sa

m
su

ng
Sm

ar
tT

hi
ng

s
10

6
1

3
0

4
✓

✓
—

—
—

—
Sa

m
su

ng
Sm

ar
tT

V
18

2
27

13
8

2
15

20
✓

—
—

—
—

Se
cu

ri
fi

A
lm

on
d

93
8

9
0

0
92

9
6

✓
—

—
—

—
So

no
s

65
13

34
7

11
1

—
—

—
—

—
—

—
T

P-
L

in
k

W
iF

iB
ul

b
11

3
7

1
0

4
—

—
—

—
—

—
—

T
P-

L
in

k
W

iF
iP

lu
g

11
3

7
1

0
4

—
—

—
—

—
—

—
W

in
k

2
12

3
7

2
0

4
—

—
—

—
—

—
—

W
ith

in
gs

H
om

e
20

12
2

2
4

9
—

—
—

✓

64

Table 3.8: Communication Evaluation.
✓+ (TLS/SSL) — ✓- (3rd-party recursive DNS)

Device
Observed IP Communication MITM Encryption

DNS HTTP UPnP NTP Custom D-C A-C A-D D-C A-C A-D
Google OnHub ✓- ✓+ ✓ ✗ ✗ — G# —
Samsung SmartThings ✓ ✓+ ✓ ✗ ✗ ✗ —
Philips HUE ✓ ✓+ ✓ ✓ ✗ ✗ ✓ #
Insteon Hub ✓ ✓ ✓ ✓ — — # — —
Sonos ✓ ✓+ ✓ ✓ ✗ ✓ ✓ G# # #
Securifi Almond ✓ ✓ ✓ ✗ ✗ — G# —
Wink 2 Hub ✓ ✓+ ✓ ✓ ✓ ✗ ✓ G# #
Belkin WeMo Motion
Belkin WeMo Switch
Belkin WeMo Link
Belkin WeMo Crockpot

✓ ✓+ ✓ ✓ ✓ ✗ ✗ ✓ G# G# #

LIFX Bulb ✓ ✓ ✓ ✗ ✗ ✓ G# #
Amazon Echo ✓ ✓ ✓ ✓ ✓ ✗ ✗ — —
Belkin Netcam ✓ ✓+ ✓ ✓ ✗ ✗ ✓ G# —
Ring Doorbell ✓ ✓ ✗ ✗ — —
Roku TV
Roku 4 ✓ ✓+ ✓ ✓ ✗ — ✓ — #
Amazon Fire TV ✓ ✓+ ✓ ✗ — ✗ — G#
nVidia Shield ✓ ✓+ ✓ ✗ — — G# — —
Apple TV (4th Gen) ✓ ✓+ ✓ ✓ ✗ — ✗ —
Netgear Arlo ✓ ✓+ ✓ ✗ ✗ — —
D-Link DCS-5009L ✓ — — ✓ — — #
Logi Circle ✓ ✓+ ✓ ✗ ✗ — —
Canary ✓ ✓+ ✗ ✗ — —
Piper NV ✓- ✓+ ✓ ✓+ ✗ ✗ — —
Withings Home ✓ ✓+ ✓ ✗ ✗ ✗
MiCasaVerde VeraLite ✓ ✓+ ✓ ✓ ✓ ✗ ✓ ✓ G# #
Chinese Webcam ✓ ✓ ✓ ✓ — ✓ # — —
August Doorbell ✓ ✓+ ✓ ✗ ✓ G# G# #
TP-Link WiFi Plug
TP-Link WiFi Bulb ✓ ✓+ ✓ ✗ ✗ ✗
Chamberlain myQ Garage Opener ✓ ✓ ✗ ✗ — —
Logitech Harmony ✓ ✓+ ✓ ✗ ✗ — G# G# —
Caseta Wireless ✓ ✓ ✓ ✓ ✗ ✗ ✓ G# #
Google Home Mini
Google Home ✓- ✓+ ✓ ✓ ✓ ✗ ✗ ✓ G# #
Bose SoundTouch 10 ✓ ✓+ ✓ ✓ ✗ ✗ ✓ G# #
Harmon Kardon Invoke ✓- ✓+ ✓ ✗ ✗ — —
Apple HomePod ✓ ✓+ ✓ ✓ ✗ — — — —
Roomba ✓ ✓+ ✓ ✓ ✗ ✗ ✗ #
Samsung SmartTV ✓ ✓+ ✓ ✗ — ✓ G# — G#
Koogeek Lightbulb ✓ ✓ ✓ — ✗ ✗ —
Nest Camera ✓+ ✗ ✗ — —
Nest Cam IQ ✓- ✓+ ✗ ✗ — —
Nest Guard ✓ ✓ ✗ ✗ — —

65

CHAPTER 4

LONGITUDINAL ANALYSIS

In the last chapter, we conducted a large-scale security evaluation of 45 COTS IoT de-

vices. The result provided a single snapshot of the security state of the device services,

network communication, cloud endpoints, and companion mobile app. The security evalu-

ation needs to iteratively characterize the security posture of the IoT device since the device

can update. These updates can improve, degrade, or stagnate the device’s security posture.

We provide two different longitudinal analyses in this chapter to investigate this matter.

The first study takes the original security assessments and compares the device services

and network encryption before and after applying device updates. Recall that our initial

deployment and configuration of the devices disabled automatic updates. The second study

takes 18 months and analyzes the device services and vulnerabilities weekly. The first

study provides an overview of the effect of updates, while the second study provides a

better characterization of the device’s security throughout its lifecycle.

4.1 Background

4.1.1 Longitudinal Studies of IoT Deployments

Two primary works explore the longitudinal aspect of IoT security. One study explicitly

focuses on TLS communications of consumer IoT devices [114]. The second study scans

the internet for exposed Industrial Control System (ICS) devices and compares the change

over time [167]. Our work studies the security of device services and network communi-

cations deployed in a testbed. Unlike prior work [114], we study the vulnerabilities for all

services and network protocols found on a device. Moreover, our testbed provides better

visibility and more control than internet scans because we can physically interact with the

66

devices and verify observations. Internet studies of IoT devices [167] can be honeypots

that may impact the results and conclusions.

4.1.2 Goals

This study aims to understand two aspects of IoT deployments. First, how do updates

impact devices’ security? Second, what are the trends in device vulnerabilities over time?

The first question explains how well a security vendor update improves the overall device’s

security. This is important to empirically show because the prevailing assumption is that

a IoT update will address all security problems. However, as we will see in later sections,

that assumption is untrue. The second question provides insights into how quickly a vendor

addresses vulnerabilities as they arise. This is important to study because it can inform the

risk calculation of the IoT deployment.

4.1.3 Evaluation Scope

We limit our evaluation scope to the device services. We exclude the longitudinal anal-

ysis of the companion mobile app, the cloud endpoints, and network communications.

As shown in Table 3.1, the analysis aspect of including every component is manual and

requires weekly testing of 45 devices, which is impossible given our resources. The man-

ual analysis is essential to characterize each component’s security posture accurately. The

evaluation component of our framework is automated using a mix of commercial and open-

source tools. These tools can have high false positives, and we must manually validate

them. To prioritize our time, we study the longitudinal component of the device and net-

work communication. We leave the longitudinal analysis of cloud endpoints and mobile

apps for future work.

67

4.2 Methodology

4.2.1 Devices

Our initial evaluation included 45 COTS devices. Over time, some devices malfunctioned,

and we had to decommission them. Moreover, we added additional devices to the lab to

account for newer devices. This change only affects the second study that analyzes 13

months of device activity. The following is a list of devices decommissioned:

1. Chinese Webcam

2. Withings Home

3. Caseta Hub

4. LIFX Lightbulb

5. Harmon Invoke

6. Koogeek Lightbulb

7. Roku TV

The following are new device additions to the testbed:

1. Amazon Echo Show

2. Western Digital myCloud Home

3. Western Digital myCloud EX2

4. Rachio 3

5. Eufy HomeBase

6. AVTech Network Camera

68

7. Axis IP Cam

We apply the onboarding method described in chapter 3 for new devices.

4.2.2 Data Collection and Analysis

We apply the method described in chapter 3 for the data collection. We depend on the

Nessus Scanner for automated device scanning. We use Nessus Scanner [154] to scan

devices for service discovery, service profiling, and vulnerability assessment. The scanner

uploads the results to the Tenable cloud portal, where the Tenable engine indexes the data

for analysis. We use the Tenable portal to investigate specific devices and their associated

vulnerabilities manually. We use this approach for study one. However, for the weekly

analysis (study two), we exported the historical data from the Tenable cloud backend and

analyzed it offline.

Study One: Update Impact. Our initial evaluation was done in March 2018, which leaves

a big time gap between more recent evaluations. Additionally, we did not have a complete

accounting of updates for each device, which can either be automatic, require consent, or

manual. To objectively study the lifecycle change of IoT devices, we conduct a baseline

evaluation and an update evaluation. The baseline evaluation is a device-only evaluation

that focuses on identifying services on an IoT device and any known security issues associ-

ated with those services. The update evaluation applies all available updates for each device

and then reevaluates them to identify changes in the services and their security issues. Our

baseline evaluation was done on 21st of April 2019 and the update evaluation was done on

9th of June 2019.

During these 50 days, we track devices that update automatically to identify if they ap-

ply any updates to the IoT device. Specifically, we manually check on a weekly basis if the

firmware version numbers for the devices change due to updates. All of the devices that

automatically are updated had at least one update between the two evaluation periods. The

remaining devices require user consent or manual update, which we applied a week before

69

(2nd of June 2019) our update evaluation. We confirmed the updates were applied success-

fully by manually checking the firmware version for each device before the baseline and

update evaluation. This controlled experiment ensures that the measurements are accurate

and represent an update in the software of the IoT devices.

Study Two: Longitudinal Analysis. Recall that some devices may go into sleep mode or

go offline, which the Nessus scanner cannot scan. We include the scan reports for devices

that the scanner successfully scanned at least four times throughout the study window (Dec

2021 to Mar 2023) to improve the accuracy of our results. The four scans must be at least

one in Dec 2021, one in Mar 2023, and two others in between. The intuition behind our

approach is that we need to capture an initial state, a final state, and at least two samples to

characterize the device’s security lifecycle accurately. If we only have two scan reports, we

miss out on potential vulnerabilities arising in the middle of the study period. The filtering

resulted in 36 devices out of the 47 in the testbed. The excluded devices include the August

doorbell, TP-Link Wifi Bulb, Sonos, Roomba, Ring Doorbell, Piper NV, Netgear Arlo,

Canary, and Amazon Echo. The excluded devices had at most two scans. The 37 devices

had a minimum of 23 scan reports and at most 57 scan reports.

70

Table 4.1: Device evaluation based on an initial evaluation, baseline evaluation, and update
evaluation. Red cells show an increase for services and issues and green cells show a
decrease in services and issues.

Device Name
Initial Eval.

03-2018
Base Eval.
04-21-2019

Update Eval.
06-09-2019

Services Issues Services Issues Services Issues
Amazon Echo 1 0 0 0 0 0
Amazon Fire TV 1 0 3 4 4 4
Apple HomePod 4 0 3 3 3 4
Apple TV 3 0 6 77 4 0
August Doorbell 1 0 1 0 1 0
Belkin Netcam 1 1 3 0 3 0
Belkin WeMo Crockpot 0 0 2 0 2 0
Belkin WeMo Link 1 1 2 1 1 1
Belkin WeMo Motion 1 1 1 1 1 1
Belkin WeMo Switch 1 1 1 1 1 1
Bose SoundTouch10 4 1 5 24 5 2
Canary 0 0 0 0 0 0
Caseta Wireless 2 0 4 0 4 0
Chinese Webcam 4 1 4 1 - - - -
D-Link DCS5009L 3 2 1 1 3 3
Google Home 5 2 4 4 5 7
Google Home mini 5 2 4 4 5 5
Google onHub 1 0 2 0 2 0
Harmon Kardon Invoke 5 1 1 1 1 1
Insteon Hub 4 6 - - - - - - - -
Koogeek Lightbulb 2 0 1 0 1 0
LIFX Virtual Bulb 0 0 0 0 0 0
Logi Circle 0 0 0 0 0 0
Logitech Harmony 2 1 0 0 0 0
VeraLite 4 6 3 18 3 18
Chamberlain myQ 1 0 1 0 1 0
Nest Camera 0 0 0 0 0 0
Nest Guard 0 0 0 0 0 0
Netgear Arlo 0 0 0 0 0 0
Next Cam IQ 0 0 0 0 0 0
nVidia Shield 2 3 4 6 4 5
Philips HUE 2 0 3 0 3 0
Piper NV 3 0 1 0 1 0
Ring Doorbell 0 0 0 0 0 0
Roku 4 2 0 2 0 2 0
Roku TV 2 0 0 0 0 0
Roomba 1 0 1 0 1 0
Samsung SmartThings 1 1 2 4 2 4
Samsung SmartTV 4 1 9 0 9 1
Seurifi Almond 2 1 3 1 0 0
Sonos 3 3 4 1 4 2
TP-Link WiFi Plug 0 0 0 0 0 0
TP-Link WiFi Bulb 1 0 0 0 0 0
Wink 2 Hub 4 4 3 4 3 4
Withings Home 1 0 0 0 0 0

71

4.2.3 Challenges and Limitations

As seen in the prior section, keeping devices active is challenging and impacts data collec-

tion. Moreover, wireless congestion caused several wireless devices to go offline, including

Roomba, Ring Doorbell, Piper NV, Netgear Arlo, D-Link DCS Cam, Canary, and Amazon

Echo. As the number of devices increases in the lab space, the wireless spectrum because

more congested, causing some devices to disassociate from the access point and become

unreachable via the network. This problem became more severe as other researchers in ad-

jacent space built a router testbed. Because of these circumstances, we could not study the

entire 46 devices in the lab. This limitation may impact the result’s generalizability since

we have fewer representative devices. We are considering using Faraday cages to better

partition the wireless spectrum in a constraint room to address these limitations.

Additionally, analyzing Common Vulnerabilities and Exposures (CVE) and CVSS scores

derived from automated tools such as Nessus may be inaccurate. First, CVE numbers are

not assigned to all security issues found in IoT devices, which makes them difficult to

track and rate. Second, the rating system (CVSS) may not accurately capture the threat

model for home-based IoT devices. For example, CVSS severity for cleartext protocol is

rated low, while SSL/TLS issues such as an expired certificate are rated medium. Although

misconfiguration in encryption weakens the security of the protocol, it remains better than

having no encryption at all. Third, essential network services that run on IoT devices are

flagged as security issues with a medium severity, which are false positives. For example,

many home-based IoT devices run mDNS (port 5353) service to announce their features

and enable zero-configuration networking.

In traditional enterprise networks, end-hosts are not expected to run the mDNS service,

whereas for home-based IoT devices this is a common practice. Fourth, some devices

reach End-of-Life (EOL) or become defective like the MiCasaVerde VeraLite and Chinese

Webcam, respectively. These issues can be problematic when trying to evaluate changes in

a device’s lifecycle. Lastly, assessment tools, such as Nessus [154], require tailoring for

72

Table 4.2: Summary of device use of encryption (#- None,G#- partial, - full), issues found
in SSL/TLS protocol, and vulnerabilities affecting services. Green shows improvement, red
shows decline, and yellow shows improvement but poor encryption.

Device Name
Service Eval. 04-21-2019 Service Eval. 06-09-2019

Encrypted SSL/TLS Issues Vuln. Encrypted SSL/TLS Issues Vuln.
Amazon Fire TV G# 2 G# 2
Apple HomePod G# 2 G# 3
Apple TV # ✓ #
Belkin WeMo Link # ✓ # ✓
Belkin WeMo Motion # ✓ # ✓
Belkin WeMo Switch # ✓ # ✓
Bose SoundTouch10 # ✓ #
Chinese Webcam # - - - - - -
D-Link DCS5009L # G# 3
Google Home 4 8
Google Home mini 4 G# 6
Harmon Kardon Invoke # ✓ # ✓
MiCasaVerde VeraLite G# ✓ G# ✓
nVidia Shield 6 5
Samsung SmartThings 4 4
Samsung SmartTV # G# 1
Seurifi Almond # ✓ - - - - - -
Sonos G# 1 G# 2
Wink 2 Hub G# 4 G# 4

home-based IoT devices and their results have to be reexamined to prioritize the security

issues. In the first study, we manually examine each evaluation to ensure the accuracy of

the characterized change.

4.3 Results

4.3.1 Study One: The Impact of Updates on Security Posture

We present the results in Table Table 4.1, and the highlights change in green for improve-

ment and red for the decline in the device’s overall security. The baseline and update evalu-

ation columns present the number of services and security issues found for each evaluation.

We find 10 devices that change between the baseline and update evaluation either by ser-

vices, issues, or both. We find seven devices that have an increase in services or issues and

three devices that have a decrease in services or issues. Moreover, we find nine additional

devices that have security issues, which do not change (improve or worsen). This implies

new features often do not lead to additional exposures.

73

Device Improvements

The Apple TV device does not update automatically, instead, it requires user consent. The

device can be configured to automatically update with recent versions of the firmware.

In the baseline evaluation, we find the Apple TV device to have multiple issues such as

vulnerabilities that affect firmware versions 11 and 12. The update addresses all 77 issues

and decreases the number of network services from six to four. The update disables Digital

Audio Access Protocol (DAAP) on port 3689 and Xsan Filesystem access on port 49152.

We highlight the change in green in Table Table 4.2 and document the vulnerabilities in

Table Table 4.3.

Similarly, we find the Bose SoundTouch10 to require user consent to apply the updates.

In the baseline evaluation, we find the Bose SoundTouch10 to have 24 issues. The update

addresses 22 of the 24 issues and does not decrease or increase any of the network services.

The remaining two issues are low severity in comparison to the 22 issues that have critical

severity. For the nVidia Shield device, the issues decrease from six to five by upgrading the

SSL/TLS service to disable weak hashing algorithms like MD5. We highlight the change

in green in Table Table 4.2 and document the vulnerabilities in Table Table 4.3.

Lastly, the Belkin WeMo Link requires user consent to apply updates. The baseline

evaluation finds that the device runs two services, DNS server on port 49154 and syseventd

on port 52367. The syseventd service allows any network attacker to run system commands

on the device without authentication as a root user. The update improves the security of

the Belkin WeMo Link device by disabling the syseventd service. Additionally, the DNS

server allows a network attacker to snoop on the DNS cache, which discloses recently

resolved records. This example illustrates the challenge in quantifying changes in IoT

device security because some vulnerabilities are not tracked by a CVE number.

74

Table 4.3: A summary of issues for baseline evaluation. Green rows show fixed issues by
updates.

Issue Description CVE CVSS Affected Device
Dropbear SSH Server ¡ 2016.72 Multiple Vulnerabilities CVE-2016-7406 Critical MiCasaVerde VeraLite
Web Server Directory Traversal Arbitrary File Access CVE-2014-3744 Critical Bose SoundTouch10
UPnP Devices (libupnp) ¡ 1.6.18 Multiple Stack-based Buffer Overflows RCE CVE-2012-5958 Critical MiCasaVerde VeraLite
Apple TV ¡ 11.4 Multiple Vulnerabilities CVE-2018-5383 High Apple TV
Apple TV ¡ 12.1.1 Multiple Vulnerabilities CVE-2018-4431 High Apple TV
Apple TV ¡ 12.1 Multiple Vulnerabilities CVE-2018-4368 High Apple TV
Apple TV ¡ 11.4.1 Multiple Vulnerabilities CVE-2018-4261 High Apple TV
Dropbear SSH Server Use-after-free Remote Code Execution CVE-2012-0920 High MiCasaVerde VeraLite
SSL Medium Strength Cipher Supported (SWEET32) CVE-2016-2183 Medium Google Home (mini), nVidia Shield
Apple TV ¡ 12 Multiple Vulnerabilities CVE-2016-1777 Medium Apple TV
Dropbear SSH Server ¡ 2013.59 Multiple Vulnerabilities,192.168.0.34 CVE-2013-4434 Medium MiCasaVerde VeraLite
SSL Certificate Signed Using MD5 CVE-2004-2761 Medium nVidia Shield, Apple HomePod, SmartThings

DNS Server Cache Snooping - - Medium
Belkin WeMo (Link, Motion, Switch),
Securifi Almond, MiCasaVerde VeraLite,
Harmon Kardon Invoke

SSL Self-Signed Certificate - - Medium
Amazon FireTV, Google Home (mini),
Apple HomePod, Wink 2, SmartThings,
nVidia Shield, D-Link DCS5009L

SSL Certificate Fails Basic Key Usage Extensions - - Medium nVidia Shield
Unencrypted Telnet Server - - Medium Chinese Webcam
SSL Certificate Expired - - Medium Amazon FireTV, D-Link DCS5009L
SSL RC4 Cipher Supported (Bar Mitzvah) CVE-2015-2808 Low Amazon FireTV, Wink 2
SSL Certificate RSA Keys Less Than 2048 bits - - Low Apple HomePod, Wink 2, D-Link DCS5009L
SSH Support Weak MAC Algorithms - - Low MiCasaVerde VeraLite
SSH Server Support CBC Mode Ciphers - - Low MiCasaVerde VeraLite
Web Server Basic Authentication w/o TLS - - Low D-Link DCS5009L
Web Server Transmits Cleartext Credentials - - Low Bose SoundTouch10

Device Exposure

In Table Table 4.1, we highlight seven devices that correspond to an increase in services

or issues following the update in red. The Amazon FireTV, D-Link DCS5009L Cam,

and Google Home (mini) introduce new network services. The Apple HomePod, D-Link

DCS5009L Cam, Google Home (mini), Samsung SmartTV, and Sonos have an increase in

the number of issues. All of the issues increase in Table Table 4.1 correspond to SSL/TLS

issues. Table Table 4.3 presents a full listing of these SSL/TLS issues and the affected

devices. This observation highlights that SSL/TLS issues are common problems found in

home-based IoT devices.

For example, in Table Table 4.2 highlighted in yellow, we see that the D-Link DCS5009L

enables SSL/TLS service for its network service, but introduces three SSL/TLS issues.

Similarly, the Samsung SmartTV and Sonos enable SSL/TLS for one of its network ser-

vices and introduces an SSL/TLS issue. Table Table 4.3 documents these issues under SSL

Self-Signed Certificate, SSL Certificate Expired, and SSL Certificate RSA Keys Less Than

2048 bits. For each issue in Table Table 4.3 we document related CVEs and their CVSS

score.

For the Google Home mini device, the update introduces a new service that does not

75

use encryption. We document this result in Table Table 4.2 in red, where the network ser-

vices drop from fully encrypted to partially encrypted. This observation shows an increase

in exposure when introducing non-encrypted services. The Apple HomePod changes the

TLS/SSL configuration on one of the network services to support a weaker cipher making

the device susceptible to the SWEET32 vulnerability, documented in Table Table 4.3. Other

devices that have issues in the baseline evaluation did not exhibit any change after the up-

date, such as most of the Belkin WeMo family of devices, MiCasaVerde VeraLite, Harmon

Kardon Invoke, Samsung SmartThings, and the Wink 2. This observation shows that issues

related to IoT devices generally do not get better over time.

IoT Device Vulnerabilities and Remediations

In Table Table 4.3 we observe a wide range of severity for each issue, which we split

between critical/high and medium/low. Moreover, many issues do not have a CVE number.

The green rows represent the issues that the device updates fix. Almost all fixed issues

are related to a service vulnerability except for Web Server Basic Authentication w/o TLS,

which is a feature enhancement that improves the device’s overall security. Furthermore,

the device updates do not fix all critical/high-severity issues.

For example, MiCasaVerde VeraLite has several critical/high severity rated vulnerable

services, but applying the device update did not fix any of the issues. The device is la-

beled as EOL by the vendor, which may explain the lack of security fixes. In the case of

the MiCasaVerde VeraLite we observe a firmware version number change but do not see

any network service change due to the update. This observation shows that EOL devices

receive infrequent updates and ignore critical security issues associated with network ser-

vices. Additionally, critical/high issues seem to be associated with a single device, whereas

medium/low issues are associated with multiple devices.

Finally, as noted earlier, the prioritization for issue types can be misleading since a

lower CVSS score for a device’s issue has higher severity in the context of IoT devices. We

76

see cleartext issues such as Web Server Transmits Cleartext Credentials and Web Server Ba-

sic Authentication w/o TLS have lower severity than SWEET32 and SSL Certificate Signed

Using MD5. When evaluating the change (improvement/exposure) in the device’s lifecycle,

researchers must consider the context and threat model associated with home-based IoT de-

vices. These observations provide insights into how complex an IoT device’s lifecycle is

and bring transparency into what researchers and practitioners should prioritize.

Overall, devices will eventually become vulnerable over time. New vulnerabilities will

be discovered, but the critical point is how IoT vendors manage their device’s security

through updates. The Apple TV is a good example showing security prioritization through

patches that address all critical/high issues. These practices reduce the exposure period and

attack window, which reduces the risk associated with the IoT deployment. Further, we

observe medium/low severity vulnerabilities persist across updates and several devices. For

example, Self-Signed Certificate is a common issue found in multiple devices and persisted

across updates. Finally, updates can introduce new issues like the example in the Apple

HomePod.

Takeaway. In this study, we perform additional security evaluations one year after the

first evaluation and present our findings. Our study is among the first to provide essential

insights for users to understand the complexity of IoT device updates throughout their life-

cycle. Our results show that IoT device updates incorporating new features or functional

improvements appear not to increase security exposure; however, our subsequent study

shows that vulnerabilities will surface throughout the device’s lifecycle. Further, devices

must address security issues early on to avoid more exposure throughout the device’s life-

cycle. We find that EOL devices often receive infrequent updates, and vendors forgo fixing

critical/high-severity vulnerabilities associated with network services. Devices that do not

expose network services have a limited attack footprint and, in general, are more secure.

77

Figure 4.1: Summary of critical CVSS vulnerabilities found in testbed.

4.3.2 Study Two: A Longitudinal Analysis of Devices’ Security Lifecycle

In this study, we take a closer look at the update changes with respect to CVEs and their

CVSS severity. We already highlighted the challenges and limitations of the current CVE

and CVSS scoring system in the context of IoT deployments. For this study, we will use

the ratings as is but address the limitations by proposing an alternate risk scoring system

in chapter 6.

Critical CVSS Vulnerabilities

In Figure 4.1, we observe three devices with four critical CVSS vulnerabilities. Except

for one vulnerability impacting the Insteon Hub device, all three vulnerabilities persist

throughout the device’s lifecycle. The VeraLite, as noted in the prior section, does not

address the vulnerability when we apply the vendor-available updates. This device has an

EOL status, which can explain the lack of security support. On the other hand, the Axis Net-

work Camera requires a manual update. The update process is involved and requires users

first to create an account with the vendor, log on to the support page, search and identify the

78

Figure 4.2: Summary of high CVSS vulnerabilities found in testbed.

correct firmware update, download the firmware locally on a personal computer, connect

the personal computer to the same network as the Axis Network Camera, log on to the cam-

era’s backend portal, navigate to the administration page, scroll through several features

to find the firmware update link, use the firmware form to upload a copy of the firmware,

apply the firmware, restart the device, and finalize the device setup through the camera por-

tal. We went through obtaining the firmware but did not update the device because we were

planning to use the current firmware for another experiment. However, the firmware update

explicitly addresses the vulnerabilities based on the release notes. Nevertheless, updating

the Axis Network Camera is esoteric and can be cumbersome for large-scale deployments

across enterprise or government facilities. The Insteon Hub critical vulnerability emerges

around June 2022 and persists onwards.

79

High CVSS Vulnerabilities

In Figure 4.2, we observe six devices with eight different high CVSS vulnerabilities. The

Insteon Hub appears to have the same security issue as shown in Figure 4.1. However, the

CVSS scoring system appears to have increased the severity from high to critical. Taken

together, the SSL Version 2 and 3 vulnerability predates the observation in June 2022. This

example highlights the challenges with the current CVSS scoring system and longitudinal

tracking of vulnerabilities. The WD MyCloud Home has two vulnerabilities: a misconfig-

uration that users can address and one related to the Samba service. A firmware update

after September 2022 addresses the Samba service vulnerability and the Local User Access

misconfigurations renamed to Unpriviledged Access. Similarly, we find the WD MyCloud

EX2 suffers from the same issue and updates around the same time (same vendor). The

VeraLite is an EOL device, and the vulnerability associated with the SSH service persists

throughout the lifecycle. We observe the Apple TV to have a high CVSS vulnerability, but

a firmware update fixes the vulnerability two months later. Finally, the AVTech IP Cam

appears to have a single vulnerability associated with its local TLS service running on port

443. The vulnerability does not appear to persist after the initial observation on December

2021.

Medium CVSS Vulnerabilities

In Figure 4.3, we observe many medium CVSS vulnerabilities. The majority of the vul-

nerabilities appear to be TLS/SSL related. We find TLS/SSL issues related to deprecated

protocol versions, vulnerable versions (Bar Mitzvah, BEAST, POODLE, and SWEET32),

weak hashing algorithms, incorrect host names on certificates, expired certificates, and

malformed certificates. Some devices address these medium CVSS vulnerabilities like the

Samsung SmartThings, WD MyCloud EX2, Nvidia Shield, Amazon Echo Show, and Google

Home. However, we could not understand why some vendors prioritize medium CVSS vul-

nerabilities while others do not. Interestingly, we observe a distinct pattern between differ-

80

Figure 4.3: Summary of medium CVSS vulnerabilities found in testbed.

81

ent groups of devices. A few devices have a very short exposure period, while the rest have

a long exposure period to the vulnerabilities. For example, the Amazon Echo Show and

the Google Home (mini) have short vulnerability exposure periods. Once vulnerabilities

surface, they are addressed almost immediately (within a week).

However, we notice that this behavior is not vendor-related but device-related. For

example, the Amazon Echo Show and the Amazon Fire TV are from the same vendor but

have vastly different exposure periods (short vs. long). Another example, the Google

Home (mini) and the Google OnHub have similar exposure periods, but the OnHub appears

to be longer. The hardware platform and third-party partnerships may contribute to these

discrepancies. In the case of Google, the Google Home is a Google-based hardware running

Google firmware. On the other hand, the Google OnHub is a TP-Link-based hardware

running Google firmware. For Amazon, the underlying firmware types also differ. The

Fire TV uses a variant of the Android OS, and the Echo Show uses a Linux-based OS

tailored for Amazon devices. In these two examples, the heterogeneity between hardware

and software platforms potentially contributes to the variation in exposure periods.

Low CVSS Vulnerabilities

In Figure 4.4, we observe six devices with eight low CVSS vulnerabilities. Most of the

vulnerabilities appear to impact TLS/SSL and SSH services. These vulnerabilities appear

to be configuration-based. It is essential to point out that in the case of the VeraList and WD

MyCloud EX2 devices, the users may not have access to the configuration to address the

SSH vulnerabilities. Even if the configuration is accessible to users, the users must have

the technical knowledge to configure the SSH service properly because the SSH service is

not a typical service found or used in IoT deployments. In our testbed, only three out of

37 devices expose SSH service on the network. The SSL Certificate Chain vulnerabilities

appear to persist throughout the device’s lifecycle. Moreover, low CVSS vulnerabilities are

not prioritized by vendors when compared to medium and high CVSS vulnerabilities. We

82

Figure 4.4: Summary of low CVSS vulnerabilities found in testbed.

observe a security fix for a low CVSS vulnerability impacting the AVTech IP Cam. The

vulnerability relates to an issue that leaks sensitive information via the Ethernet interface.

Vulnerable devices may add different data to each Ethernet frame for padding. This data

could come from the device’s memory or a hardware buffer on its network card. An attacker

on the same network as the device can gather sensitive information (passwords, secret keys,

and device information).

4.4 Iterative Security Evaluation

Our first study observed that devices not addressing security issues from the beginning

likely result in more exposure throughout the device’s lifecycle. EOL devices often receive

infrequent updates, and vendors forgo fixing critical/high-severity vulnerabilities associ-

ated with network services. Devices that do not expose network services have a limited

attack footprint and are generally more secure. In our second study, we validated these

observations by closely examining the devices’ lifecycle for emerging vulnerabilities and

83

exposure periods. We observe that high and medium CVSS vulnerabilities appear to be pri-

oritized over low CVSS vulnerabilities. Moreover, critical CVSS vulnerabilities in some

devices’ lifecycles remain for two reasons. First, we show that EOL devices most likely

will not receive security updates. Two, devices may have cumbersome update processes

making it difficult for users to address critical vulnerabilities. Finally, reclassifying vulner-

abilities from high to critical CVSS may create ambiguity in the severity score.

The main goal of the longitudinal analysis is to provide a better understanding of how

vulnerabilities evolve over the lifecycle of a device. This information will inform the risk

assessment methodology to consider the temporal aspects of vulnerabilities. For example,

we learn that critical CVSS vulnerabilities should increase the risk associated with IoT

deployment, especially for long exposure periods. On the other hand, high CVSS vulnera-

bilities can increase or decrease the risk of IoT deployment because the vulnerabilities have

varying exposure periods. In the case of the Apple TV vulnerability, the exposure period is

two months, which can lower the risk associated with IoT deployment because a firmware

update fixes the vulnerability. We will use the exposure times as a metric to inform the risk

score approach in chapter 6.

84

CHAPTER 5

LARGE-SCALE ANALYSIS OF THE IOT MALWARE LIFECYCLE

Combining vulnerability and threat assessment can help quantify the overall risk and the

potential impact on IoT deployments to protect sensitive information, prevent financial loss,

protect physical safety, and ensure compliance. Understanding these threats is necessary to

identify potential exploited vulnerabilities and develop security measures or remediations.

When conducting risk assessment, we need a basis to understand the patterns and trends

in attacks against IoT deployments. Threat trends can inform operators and prioritize de-

cisions about the deployment environment and needed security measures. Unfortunately,

traditional threats do not apply directly to IoT deployments because they have unique chal-

lenges.

5.1 Challenges and Limitations

Unique Challenges in IoT Attacks. These challenges include device diversity, compu-

tational resource limitations, physical exposure, communication protocols, multiple net-

worked components, and limited user interface. The device diversity creates varying hard-

ware and software platforms that require matching threat analysis tools to study their

threats. The limited computational resources restrain the security measures that IoT de-

vice can implement. The physical exposure of IoT deployments gives attackers additional

attack surfaces like low-energy network protocols or physical access to the device. The

number of communication protocols found IoT deployment can enable additional attacks.

Finally, a compromised IoT device is challenging to identify because the device has a lim-

ited user interface to investigate.

The Need for Large-Scale Study. We must conduct a large-scale study to understand IoT

threat landscape. A large-scale study can provide a more comprehensive understanding by

85

analyzing a range of data across time, including malware systems and network behavior,

which leads to a better understanding of the IoT threat landscape. Moreover, a large-scale

study can identify patterns and trends in attack behavior over extended periods, proactively

identifying emerging threats. We use the framework proposed in chapter 2 to study IoT

threats. Specifically, we characterize infection, payload, persistent, capability, and C&C

communication for 166K IoT malware samples. Our framework deliberately includes re-

producibility to allow researchers to replicate the study and validate our findings. This

approach increases the scientific rigor of the study and ensures that the results are reliable

and can be used to inform security decisions like risk assessment.

Need for IoT Malware Analysis Platform. In order to study IoT malware, we need to

develop an extensible malware analysis platform to support the diversity of hardware and

software. In Table 5.1, we summarize prior efforts for building an IoT malware analy-

sis platform. We can observe that many solutions either have partial support for analysis,

are closed source, or are no longer available online. Open-source dynamic platforms like

Lisa [168] Detux [169], and Tamer [170] have partial support for hardware architectures

like ARM and MIPS. Furthermore, V-Sandbox [171], which promises many useful fea-

tures, has yet to be made available by the authors. Lastly, commercial or closed-source

sandboxes like IoTBox [143] and Padawan [172] appear to provide a rich analysis platform.

However, we need access to the platforms to conduct our large-scale study. We reached out

to Padawan’s authors, who provided access to the platform. The platform only supported

a few architectures and limited the samples we could analyze to a few hundred. As of this

writing, the platform is no longer online or accessible. Due to these limitations, we built

our own IoT malware analysis platform called BadThings [173], which we describe next.

5.2 Methodology

This section will describe our dataset, malware analysis platform, and analysis approach.

Our IoT malware analysis platform is more comprehensive than prior efforts and democ-

86

Table 5.1: A summary of documented or publicly available IoT Malware analysis plat-
forms. ✗ indicates resource no longer available.

Tool Name Open
Source

Open
Access

Static
Analysis

Binary
Emul.

Full
System

Supported Arch.
ARM MIPS-EL MIPS-BE SPARC PPC M68K SH4

LISA ✓ ✓ ✓ ✓ ✓ ✓
Tamer ✓ ✓ ✓ ✓
IoTBox ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Detux ✓ ✓ ✓ ✓ ✓
Padawan ✗ ✓ ✓ ✓ ✓ ✓
V-Sandbox ✗ ✓ ✓ ✓ ✓
BandThings ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ratizes access to advanced malware analysis techniques for the security community. Our

platform includes a large, diverse, and representative malware corpus. Additionally, we

made our platform easy to use by building rich analysis virtual machines, containerizing

them, and automating their deployment. We create extensive documentation for using the

tools, artifacts for each sample in the corpus (reproducibility), and the analysis results (val-

idation).

5.2.1 Data Sources

We list all the dataset sources for our measurements in Table Table 5.2.

VirusTotal. VirusTotal (VT) is a malware analysis and sharing platform that is used by

hundreds of commercial security companies and thousands of researchers. We source our

dataset from VT and assume that it provides good coverage because of the sheer size of

files submitted to the platform, see Figure Figure 5.1. We use VT to identify new binary

submissions that meet the following criteria: (1) ELF binaries, (2) never seen by VT before,

(3) machine architecture is not x86 or x86 64, (4) ELF binary is not Android type, (5)

submission is not tagged as ”shared-lib,” ”coredump,” or ”relocatable,” (6) file size is less

than 30MB, and (7) has at least one anti-virus (AV) detection. We choose these criteria

based on the access limitation (10K files/day) and the following assumptions.

First, our work studies malware that target embedded IoT systems. The vast majority

(82%) of IoT systems rely on Linux-based OS (ELF) [174] and utilize Reduced Instruction

Set Computers (RISC) architecture [175], whereas x86 and x86 64 are based on Complex

87

Instruction Set Computers (CISC) architecture, mostly found in servers, desktops, and lap-

tops. We exclude x86, x86 64, and Android malware because (1) they are well covered in

prior works [101, 96, 108, 110, 176], (2) are more likely to target mobile or traditional com-

puting devices (servers, desktops, and laptops), and (3) their volume inundate our access

capacity, as shown in Figure Figure 5.1.

Second, we found ELF files larger than 30MB to be mostly coredump 1, shared-lib, or

relocatable 2. We found seven files, over 30MB, detected by one or more AV engines and

one file detected by five or more AV engines 3. Third, our analysis pipeline can analyze

native ELF binaries, therefore, it does not support Java-based Android apps, but it supports

files that run on the Android Runtime environment (native). VT classifies files that run na-

tively in Android (Android Runtime) as ELF files because Android uses a tailored version of

the Linux Kernel. We found a limited number of files for Android IoT and TV, specifically,

113 (AV labels 11 as malicious) and 57 (AV labels 6 as malicious) files, respectively.

We rely on AV detection as a way to identify possible malware, similar to prior works [177].

First, we collect files with one AV detection to stay under the daily access quota (10K/day,

see Figure Figure 5.1). Second, we filter files with less than five AV detections to suppress

false-positives, which are common in VT [177]. These criteria filter out possible irrelevant

samples that are not likely to be IoT malware with minimal impact on the empirical results.

However, we do acknowledge this might lead to a bias in the malware dataset since our

collection relies on AV detections that can have inherent limitations.

Active and Passive DNS. Our active DNS (aDNS) dataset comes from the ActiveDNSPro-

ject [178], which actively resolves many popular zones (COM, NAME, NET, ORG, BIZ,

etc.), top sites from the Alexa Top 1M, and public blocklists daily. The passive DNS

(pDNS) is an anonymized dataset provided by a large internet service provider (ISP) based

in the US. The ISP operates a large set of geographically-distributed local DNS resolvers

1A recorded state of a program during a crash
2An object file that linkers use to build an executable.
3MD5: 3c5a75bd1df81c6f355b3edf61729507, Label: BitCoinMiner

88

0

2M

4M All Unique Files
Detected Files

0

1M

2M
Windows

2019-01
2019-02

2019-03
2019-04

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

0

200K

400K Android

2019-01
2019-02

2019-03
2019-04

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

0

20K

40K

60K Linux

Figure 5.1: The daily volume of files and detected files submitted to VirusTotal in 2019 per
platform.

Table 5.2: The data sources used for the empirical study.

Data Provider Data Type Role

VirusTotal
Binaries
Metadata
Detection & Labels

Binary Analysis
Growth & Size

ActiveDNS Project Active DNS Internet Measurement
Large ISP Passive DNS
Bad Packets Honeypot Device Targeting
Tranco Top Site Ranking Filtering

that service over 40 million internet-connected devices, which include IoT devices. We use

aDNS and pDNS to investigate IoT malware infrastructure. Our aDNS and pDNS datasets

cover the period from May 2019 up to Jan 2020. We specifically use aDNS and pDNS to

enumerate relationships between observed IPs and domains. We use pDNS data to quantify

the lookup volume and the number of anonymized clients resolving the C&C infrastructure.

Bad Packets Honeypots. Bad Packets [179] operates a set of proprietary honeypots that

monitor emerging cyber threats targeting enterprise networks, IoT devices, and cloud com-

puting environments. We were provided an aggregate dataset that spans the entire month

of June 2019. We use the honeypot dataset to identify attack characteristics observed on

the internet and quantify what devices IoT malware target. Specifically, we use aggregate

89

statistics about internet scans that are classified as IoT malware by Bad Packets.

Tranco Top Site Ranking. We use Tranco’s top site ranking [180] to identify and filter

benign domains. Our static and dynamic analysis yield large sets of domains and IPs,

which may not be related to malware. For example, a link to the UPX packer website is

commonly found in samples that are packed by UPX.

EL
F

B
in

ar
y

7f 45 4c 46 01 01 01 00
00 00 00 00 00 00 00 00
02 00 28 00 01 00 00 00
94 81 00 00 34 00 00 00
40 00 00 00 00 00 00 00
48 c7 01 00 00 00 00 00

...

Target Arch.
Library Linking

Anti-Analysis

UPX Unpack
Infection Vector

IP/Domain

binutils Ghidra Yara hexdump

ARM MIPS EB/EL
PPC SPARC SH4

Full-System

Binary Emulation
ARM

X86/x86-64
MIPS

Syscall
Trace

PCAP
Trace

QEMU Build Root Zelos

Static Binary Analysis Dynamic Binary Analysis

Figure 5.2: An overview of the static and dynamic analysis pipeline.

5.2.2 Analysis Methods

Figure Figure 5.2 presents an overview of our analysis and measurement methodology. We

use static, dynamic, and network analysis. We do not claim any of the techniques as a

novel contribution, instead, we use them as a means to study IoT malware. We rely on

well-established approaches from prior works [142, 181, 182, 183] and tailor them for our

analysis.

Metadata Analysis. We use VT for AV detection, AV labels, and in-the-wild names. We

combine the AV labels with AVClass [184] to consolidate the labels for each sample. This

metadata analysis provides context about the malware samples and helps us to correlate the

findings from static and dynamic analysis.

Static Analysis. The goal of static analysis is to identify each binary’s target architec-

ture, linking method (static vs dynamic), anti-analysis tactics, packing, embedded domains

and IP addresses, and infection vectors. We use a set of tools from binutils suite to per-

form static analysis, namely readelf, objdump, objcopy, strings, and hexdump. The file

tool parses the binary information and identifies the target architecture, endianness, and

90

linking information based on the file headers. Next, we examine the ELF binaries for anti-

analysis artifacts by using four heuristics. First, we inspect the ELF file for the first LOAD

(PT LOAD) segment in the section headers that is marked for read, write, and execute

(RWE). This anti-analysis trick is commonly used to hide the program’s entry point and

break analysis tools.

Second, we examine the ELF file for fake section headers that overlap the program’s

entry point by iterating through each segment and section. For each segment, we check

if the segment overlaps the entrypoint address. If we detect an overlap, we conclude that

the sample has anti-analysis artifacts. This well-known tactic overlays fake data and text

sections with opposite flags (switching W and X) to confuse analysis tools by parsing the

fake data sections for code. Third, we examine the ELF file for fake dynamic symbol tables

by checking the section header for one or more dynamic symbol tables (SHT DYNSYM).

We iterate through each segment and look for dynamic symbol tables that come after the

dynamic table (DT SYMTAB) and check if the dynamic symbol table overlaps the dynamic

table (virtual address + size is outside the segment). This anti-analysis technique inserts

fake dynamic symbol tables for dynamically-linked binaries that mix up the symbols of

functions.

Fourth, we iterate over each segment and check the section header fields (e shoff,

e shentsize, e shnum e shstrndx for zero values. This technique removes critical infor-

mation about the section headers making it impossible to parse. The Linux kernel does not

use the section headers when loading and executing the ELF file, therefore removing the

section headers breaks some analysis tools that rely on section headers, but does not affect

the execution of the binary. Next, we try to detect UPX packed samples by looking for

UPX sections and string artifacts. For UPX packed files, we also check if the UPX header

is zeroed out, which usually breaks the UPX decompression utility but not the executable.

We then attempt to unpack each sample using the UPX utility. Some files fail to unpack

due to corrupt UPX headers, but they execute in the dynamic analyzer.

91

Finally, we use static analysis to extract IP addresses and domains using strings with

default settings and regular expressions. For captured domains, we use tldextract, a python

library, to check for properly formed domain names. For IP addresses, we remove all

bogons and invalid IP addresses. We also use static analysis to identify infection vectors by

using over 200 Yara signatures. We source our Yara signatures by enumerating a set of IoT

and router device vendors, crawl the NVD [185], and identify Common Vulnerability and

Exposure (CVE) entries that have public proof-of-concept (PoC) code. We then manually

build and verify each Yara signature. For each matched Yara signature, we verify that (1)

the offset matches the signature inside the binary and (2) the binary offset is referenced by

the code section.

Dynamic Analysis. We build architecture-specific virtual machines that execute each sam-

ple and collect their system call and network traffic, which we call full-system analysis.

We run each sample for 60 seconds and collect system call traces using strace and net-

work traces. Further, we use a binary emulator that emulates the instructions and system

calls of an ELF file to generate system call traces, referenced as Zelos [186] in Figure Fig-

ure 5.2. The run time of a sample influences the observed behavior as documented in prior

works [105]. To account for this limitation, we measure trace divergence between full-

system and binary emulation. Binary emulation allows us to skip over sleep system calls

and fast forward the execution of malware hence revealing possible hidden behavior. Ad-

ditionally, we use leaked source code from various IoT malware found online [187] and

match them with the execution traces and function symbols to identify capabilities.

We empirically found full-system emulation traces to match 85% of binary emulation

traces for ARM. The remaining 15% could not be compared due to application binary

interface (ABI) mismatch during full-system analysis or failure to run in binary emulation

(missing required libraries or incompatible architecture version). Furthermore, we found

that before 30 seconds of full-system emulation about 95% of malware will engage in

network system calls that either block or loop infinitely. Hence, we chose 60 seconds

92

to balance between analysis quality and performance. We count successfully executed

samples by two metrics, namely system artifacts and network artifacts. For system artifacts

we consider a malware to be active if it creates three or more processes in the VM or if it

invokes 100 or more system calls.

These parameters were conservatively chosen by examining diverging traces from full-

system and binary emulation. For network artifacts, we collected network traffic from the

VM for 72 hours without executing any malware. We then filter out any traffic that matches

the baseline or bogon networks. We note that this is a modest attempt to build a dynamic

malware analysis system for six different architectures and we recognize the challenges

that are documented by earlier works [181, 182, 188]. Nevertheless, we report the results

in Table Table 5.3 and make our analysis tools public for the community. Dynamic anal-

ysis allows us to study infection attempts, persistence methods, exercised capabilities, and

C&C communication. We use these findings to empirically document them in the lifecycle

framework and compare them to desktop and mobile malware.

Infrastructure Analysis. We use a three-tiered process to filter and identify C&C indica-

tors. First, we use Tranco [180] top sites to enumerate a list of benign domains. We count

the most referenced domains and filter them using the top site list. Second, we manually

inspect the new list to remove the remaining benign domains. Third, we build a bipar-

tite graph between domains and IPs to find connected components and filter out additional

benign clusters [183]. After removing all the benign indicators, we use historical pDNS

and aDNS to expand on the malicious indicators to find common infrastructure. For IP

addresses, we look into pDNS and aDNS to identify associated domains. We repeat our

method on the newly identified domains and IPs until we remove all benign nodes. We

verify each node manually.

93

Table 5.3: A statistical summary of the dataset, metadata, static, and dynamic analysis
grouped by IoT malware’s target architecture.

Arch. Dataset
Size

VT Metadata Static Analysis Dynamic Analysis
Detection

(5+)
Honeypot Library Linking Anti-

Analysis
Polymorphic

System
Network

Coverage Static Dynamic Packed Unpacked DNS Outbound

ARM 81,152 57,484 25,406 50,117 4,797 2,570 11,464 9,124 36,660 2,939 42,765
MIPS 19,574 17,675 7,769 17,258 94 323 2,812 2,566 14,536 1,271 13,070
MIPS-EL 15,906 14,757 6,052 14,372 71 314 2,517 2,351 13,481 1,178 12,077
PPC 15,648 14,909 6,393 14,604 74 231 4,232 2,468 13,536 756 12,580
SPARC 11,650 11,218 5,197 10,904 31 283 7 0 10,344 729 9,181
SH4 11,587 11,303 6,667 11,038 67 198 6 0 9,619 414 10,772
M68K 11,255 10,983 6,578 9,420 1,342 221 7 0 - - - - - -

Total 166,772 138,329 64,062 127,713 6,476 4,140 21,045 16,509 98,176 7,287 100,445

Table 5.4: Top anti-virus (AV) labels based on reports from VirusTotal.

ARM MIPS PPC SPARC SH4
Label Count Label Count Label Count Label Count Label Count

mirai 37,505 (65.244%) mirai 22,602 (66.61%) mirai 11,350 (76.12%) mirai 8,305 (74.03%) mirai 8,030 (71.04%)
gafgyt 15,468 (26.91%) gafgyt 8,290 (25.56%) gafgyt 3,336 (22.36%) gafgyt 2,810 (25.04%) gafgyt 3,101 (27.44%)
NOLABEL 1,117 (1.9%) hajime 1,181 (3.64%) tsunami 149 (1.00%) tsunami 62 (0.55%) tsunami 114 (1.01%)
dofloo 893 (1.55%) NOLABEL 729 (2.24%) NOLABEL 62 (0.42%) NOLABEL 33 (0.29%) NOLABEL 51 (0.45%)
dvmap 716 (1.25%) tsunami 418 (1.29%) mirai-dl 2 wanuk 1 bricker 3
tsunami 544 (0.95%) dofloo 91 (0.28%) sshdkit 1 telnetd 1 mirai-dl 2
hajime 531 (0.92%) ddostf 50 (0.15%) linksys 1 sshdkit 1 aidra 1
ddostf 264 dnsamp 14 hydra 1 solaris 1 - -
lotoor 260 aircrack 7 hive 1 snamp 1 - -
dnsamp 28 bricker 5 healerbot 1 silex 1 - -

5.3 Results

Using the proposed lifecycle framework, this section presents the results from our empir-

ical measurements and observations. We summarize the results for each subsection by

takeaways (TA).

Measurement Setup. We filter our dataset from 166,772 to 138,329 samples that are

detected by five or more AV engines. We then analyze each sample statically and dynam-

ically to group the results by architecture as shown in Figure Figure 5.2. We use binutils,

Yara, Ghidra, and hexdump to identify the target architecture, library linking, symbols,

packing, and anti-analysis artifacts. For packed samples, we attempt to unpack them using

UPX [189]. For dynamic analysis, we use Buildroot [190] and QEMU [191] for full-system

analysis and Zelos [186] for binary emulation. We build our full-system virtual machines

(VM) by using the results from static analysis to identify a common set of required libraries

to include in the VMs. However, we were not able to build a VM for M68K architecture

94

0.0

0.5

1.0

ARM MIPS PPC

0 20 40
Number of Detections

0.0

0.5

1.0

SPARC

0 20 40
Number of Detections

SH4

0 20 40
Number of Detections

M68K

Figure 5.3: The number of AV engines that detect IoT malware per architecture. The dotted
vertical line marks five AVs.

due to legacy code incompatibility, therefore, we only considered the M68K samples for

static analysis.

Table Table 5.3 summarizes our analysis results by architecture. The VT metadata has

two main columns, namely detection and honeypot. Detection refers to the number of

samples that are detected by five or more AV engines and honeypot refers to the number of

samples seen by the VT honeypot. The static analysis section has three columns, namely

library linking, anti-analysis, and polymorphic. The library linking column presents the

number of static and dynamic linked samples, the anti-analysis column presents the number

of samples that break static analysis tools, and the polymorphic column presents the number

of packed samples and how many were unpacked. Lastly, the dynamic section has two

columns, namely system and network. The system column reports the number of samples

that create three or more processes or invoke at least 100 system calls. For the network, we

report the number of samples with DNS and outbound internet traffic.

5.3.1 Detection and Labeling

In Table Table 5.4, we present the top 10 AV labels grouped by system architectures. We use

AV engines hosted by VT, which are reported to have better detection coverage than their

desktop versions [177]. However, Figure Figure 5.3 suggests that traditional AV engines

95

Device Type

12/1/2016 3/1/2017 6/1/2017 9/1/2017 12/1/2017 3/1/2018 6/1/2018 9/1/2018 12/1/2018 3/1/2019 6/1/2019 9/1/2019 12/1/2019

CCTV
DVR/NVR
Enterprise

ICS
IP Cam/Media
Modem/Router

NAS
Smart Home

Web App 4

2

1

1

6

3

1

1

4

3

1

3

1

1

1

1

2

6

1

1

22

2

1

142

1

5

211

1

1

Figure 5.4: A timeline of exploits for Mirai variants based on reports from security re-
searchers.

lack support and detection for IoT malware. VT hosts over 70 AV engines, but only 55

support ELF files. We observe 50% of the malware is detected by less than 25 AV engines

and at most by 45 AV engines as shown in Figure Figure 5.3. Furthermore, AV engines

appear to detect ARM malware with better coverage, over 25% of the ARM samples are

detected by at least 2 AV engines. AV engines provide AV label coverage for at least 97%

of the detected malware.

We observe that the mirai label dominates in all system architectures and accounts for

76% of the PPC samples. The next most popular label is gafgyt. The ARM samples have

more diverse labels in comparison with the others. For example, the label lotoor and dvmap

are only found in the ARM dataset. Some labels are exclusive to a set of architectures like

hajime. Herwig et al. [135] report that Hajime malware is only built for ARM, MIPS, and

MIPS-EL, which is aligned with our findings. The inconsistencies in AV detection and

labeling are also reported in prior studies [192, 193].

TA1. Given that no host-based intrusion detection systems (HIDS) run on IoT devices,

detecting malware after an infection is not possible. However, signature-based scanners

can detect suspicious binaries forensically captured from the network or the device. Our

findings suggest that many AV scanners lack support or have limited signature coverage

(mostly mirai labels) for IoT malware in the wild.

96

Table 5.5: Device categories and their top vulnerabilities that are targeted by IoT malware
based on data from Bad Packets.

Category Type Scans Top Vuln. in Category Scans (%)
CCTV 221,340 GoAhead login.cgi 221,340 (100)
Modem/Router 102,690 Linksys 26,239 (25.55)
DVR/NVR 40,998 Kguard DVR 24,069 (58.71)
Enterprise 18,277 Yealink VOIP 11,958 (65.43)
Smart Home 8,806 Google Chromecast 8,422 (95.64))
Web App 6,133 Apache Struts 2 6,094 (99.36)
IP Cam/Media 1,458 WIFICAM Generic 661 (45.34)
NAS 565 QNAP 565 (100)
ICS 11 Schneider U.Motion 11 (100)

Table 5.6: Top exploits found in IoT malware binaries based on static analysis.

Vendor CVE Dev. Type Vuln. Type Dev. Arch. AV Labels ARM MIPS PPC SPARC SH4 M68K

Huawei CVE-2017-17215 Router CMD Inject MIPS gafgyt, ircbot,
mirai, tsunami 10,046 5,527 2,604 2,352 2,277 2,226

ZTE - - Router Default Cred MIPS dlink, exploitscan,
gafgyt, mirai, tsunami 3,190 2,038 912 728 735 724

D-Link CVE-2014-8361 Router CMD Inject MIPS gafgyt, mirai, tsunami 2,378 1,436 656 534 530 534
GPON CVE-2018-10562 Router CMD Inject Unknown gafgyt, mirai, tsunami 2,016 1,245 539 448 443 435
Zyxel CVE-2016-10372 Modem CMD Inject MIPS gafgyt, mirai, tsunami 531 356 129 117 132 132
Juniper CVE-2015-7756 Firewall Backdoor ARM gafgyt, mirai 413 256 115 95 77 82
Multi-Vendor - - DVR CMD Inject ARM gafgyt, mirai, tsunami 326 229 74 56 68 70
D-Link CVE-2013-7471 Router CMD Inject MIPS gafgyt, mirai, tsunami 317 205 79 62 71 71
Synology CVE-2017-9554 NAS Info Leak Various gafgyt, intercepter, minerd

mirai, stealthworker, xmrig 289 145 49 31 34 31
Zyxel CVE-2017-18368 Router CMD Inject MIPS gafgyt, mirai 191 105 48 41 43 38
Asus CVE-2018-15887 Modem CMD Inject MIPS gafgyt, mirai 166 92 40 42 53 50
NETGEAR - - NAS CMD Inject ARM mirai 112 87 25 21 26 24
HooToo CVE-2018-20841 Router CMD Inject MIPS gafgyt, mirai, tsunami 112 60 28 17 22 22
WePresent - - Router CMD Inject MIPS mirai 98 58 24 21 25 23
LG CVE-2018-17173 Display CMD Inject ARM mirai 98 58 24 21 25 23
Vera CVE-2013-4861 Hub Info Leak MIPS mirai 92 52 21 18 21 20
Belkin - - Smart Home CMD Inject MIPS mirai 88 50 20 17 20 19
Multi-Vendor - - Camera CMD Inject MIPS mirai 85 48 20 17 20 19
Multi-Vendor CVE-2017-8225 Camera Info Leak MIPS mirai 85 48 20 17 20 19
DreamBox CVE-2017-14135 Media CMD Inject PowerPC mirai 85 48 20 17 20 19
Multi-Vendor CVE-2019-3929 Router CMD Inject MIPS mirai 85 48 20 17 20 19
Oracle CVE-2019-2725 Web App CMD Inject x86 64 mirai 85 48 20 17 20 19
Schneider-Electric CVE-2018-7841 Industrial/Home CMD Inject x86 mirai 85 48 20 17 20 19
Linksys - - Router Mem Corrupt MIPS mirai 83 50 20 19 21 20
EnGenius - - Router CMD Inject MIPS mirai 68 64 13 12 14 13

5.3.2 Infection Analysis

We observe that IoT malware use remote exploitation and default credentials to infect de-

vices. We present a timeline in Figure Figure 5.4 that shows the incorporation of exploits

in IoT malware based on reports from researchers. The timeline begins right after the Mirai

source code became public and extends to the end of the malware collection period (Dec.

2019). We find nine categories of devices across 70 different exploits [194, 203, 204, 205,

206, 207, 208, 209, 210, 195, 196, 197, 198, 199, 200, 201, 202]. We observe that the

number of exploits increases significantly in 2019, which target new categories of devices

not seen before such as enterprise network equipment, industrial control systems (ICS),

network attached storage (NAS), and smart home devices.

Moreover, in Table Table 5.5 we present results from the Bad Packets LLC [179] hon-

97

eypot. The table shows a list of device categories targeted by IoT malware in June 2019

ranked by the number of observed scans. We present the top vulnerability in each cate-

gory to the right and quantify the composition of the scans per category. For example, the

Kguard DVR vulnerability makes up 58.71% of the scans in the DVR/NVR category. We

present our empirical findings in Table Table 5.6. The table shows the vendor of the target

device, CVE number, device type, vulnerability type, device architecture, malware labels,

and the number of samples containing the exploit.

First, we observe that the exploits affect internet-facing devices and devices behind the

NAT. For example, routers and firewalls are typically internet-facing while smart home

devices such as hubs should be behind a NAT device. Second, we observe that most of

the vulnerability types affect network services by command injection, credential leak, or

default credentials. Third, the affected device architectures are mostly ARM and MIPS,

nevertheless, IoT malware appears to be architecture agnostic. Finally, we observe that

certain malware families, such as minerd, xmrig, intercepter, and stealthworker target spe-

cific devices like the Synology NAS, which suggests that some IoT malware specializes in

device targeting.

TA2. Early IoT malware (see subsection 2.3.2) relied on default credentials or a specific

vulnerability to compromise internet-facing IoT devices. Our findings suggest that IoT

malware has evolved to rely on a suite of exploits that target many diverse device categories

not seen before, which can be either internet-facing or behind a NAT device.

TA3. Given most IoT devices are headless, lack a graphical user interface (GUI) or periph-

eral devices, all observed exploits do not require user interaction. This IoT device property

allows malware to efficiently infect many devices very quickly. Additionally, the archi-

tecture agnostic nature of IoT malware may potentially make them more of a threat than

earlier desktop worms.

98

5.3.3 Payload Analysis

We observe that IoT malware payloads use packing, environment keying, scripting, and

cross-architecture binaries. Table Table 5.3 shows that at least 15% of the malware use

packing, and we were able to unpack 78% of the packed samples. The remaining samples

used anti-analysis tricks that broke the standard unpacker. We observe in dynamic analysis

that IoT malware payloads use environment keying before executing. For example, we see

payloads profiling the device name, CPU, and memory to check for the right environment.

We found a set of payloads that rely on script interpreters like Python and Lua for

functionality. However, most payloads use the system shell for system reconnaissance and

persistence. For example, various binaries invoke shell commands like uname, whoami,

lsof, crontab, and os-release to collect information about the device. We observe on ex-

ploitation that multi-architecture payloads are delivered to the device to brute force the

target system architecture. For example, if the malware cannot identify the device’s ar-

chitecture, they test many variants of the payload for different architectures such as ARM,

MIPS, PowerPC, SPARC, SH4, and M68K.

TA4. Our analysis suggests IoT malware uses polymorphism to evade signature-based

detection. We estimate at least 15% of the samples use packing and 3.3% use a more

advanced anti-analysis method to thwart unpacking. Also, the analysis suggests that the

device’s system shell interface is a primary component for payload selection and infection.

5.3.4 Persistence Analysis

Before presenting the results, it is important to understand how embedded devices configure

their file systems. First, most embedded devices mount their rootfs (file system) as read-

only (RO). This reduces wear on flash memory, eliminates system file corruption, avoids

accidental overwrites, facilitates device update over-the-air (OTA), and eases factory reset.

Still, there are processes on the device that need write-access for passwords, configurations,

and keys. Embedded devices designate a non-volatile data region and a volatile temporary

99

file system region on the flash memory. The data region is used by processes and services to

store their configurations. Malware have to consider these file system constraints to persist

on the device.

We observe in dynamic analysis that IoT malware attempt to persist on the device’s

firmware. We must clarify that firmware refers to the IoT device’s OS, which is a customized

embedded Linux instance (unified layer, see Table Table 2.2). In many IoT devices, services

run as root, which means if exploited by malware then they will gain root access on the

device. We observe that IoT malware use many persistent methods by installing themselves

as either a service, a startup script, a system module, or a backdoor. Some samples attempt

to remount the file system with read-write permissions to persist on the rootfs. For example,

using the command mount -o remount, malware can remount the file system with read-write

permissions. In several instances, we observe malware using vendor-specific tools such as

/bin/cfgmtd that target Ubiquiti devices to add an SSH backdoor.

Even with volatile memory regions, we observe IoT malware using tmpfs paths to per-

sist. On system reboot, the tmpfs paths will be wiped, which will remove the IoT malware.

However, to prolong the infection, we notice that IoT malware will disable the watchdog

process on devices. A watchdog process on an embedded device is a privileged process

that mitigates software faults by forcing a device to reboot into a clean state. If malware

causes the system to become unstable, the watchdog process will reboot the device and

consequently remove the malware. For example, IoT malware will disable the watchdog

process by writing the ”Magic Close” value (“V”) to one of the following locations /de-

v/FTWDT101 watchdog, /dev/misc/watchdog, or /dev/watchdog.

TA5. The results suggest forensic identification of infections on a device may be difficult

because malware can persist in many locations. Although IoT devices mount their file

system as read-only, there appears to be many methods to overcome this limitation, which

can worsen infection cleanup.

100

Table 5.7: Scanning methods found in IoT malware binaries based on dynamic analysis.

Protocol Port Number Attack Type
Telnet 23, 2323 Dictionary Attack
ADB 5555 Android Debug Bridge Shell
HTTP 5555, 55555, 52869, 37215,

7547, 8080, 8081, 443, 80, 81 Command Injection

5.3.5 Capability Analysis

Initial variants of IoT malware discussed in subsection 2.3.2 focused on DDoS and scan-

ning capabilities. Our analysis shows an expanded set of capabilities found in modern IoT

malware. Using dynamic analysis, we observe aggressive evasion by disabling firewall pro-

cesses, access control modules, ISP remote administration, unblocking restricted domains,

deleting access logs, history logs, and service access logs, and modifying timestamps on

files. Moreover, we observe privilege escalation attempts targeting the Android Runtime

environment. We also observe data theft attempts that look for Sybase database files, col-

lect device profiles, harvest device configurations, and enumerate system files. Perhaps

the most prevalent capabilities are network scanning and spreading. Table Table 5.7 is a

summary of the observed scanning and exploitation attempts, which includes a subset of

the vulnerabilities found in Table Table 5.6. We do not observe direct DDoS attacks, but

through static analysis, we find DDoS capabilities in the malware. We identify a set of

DDoS attack functions using function symbols in the analyzed samples and match them

with public malware source code. Table Table 5.8 presents a list of the DDoS functions

found in IoT malware.

Additionally, we observe from dynamic analysis device destruction attempts by IoT

malware. Malware will try to delete the root directory of the file system, dbus devices, zero

out MMC memory, remove configured devices on general-purpose IO pins, and delete the

Linux device table. Furthermore, we observe IoT malware will abuse device resources for

cryptocurrency mining and proxy services. Malware will download open-source miners

such as cgminer and attempt to lock out the device owner by removing restore tools, dis-

abling device upgrade, and hard-coding an IP address to a specific mining pool server. We

101

Table 5.8: DDoS capabilities found in IoT malware binaries based on static analysis and
leaked source code.

DDoS Type Function Symbol Name

TCP

attack tcp syn, attack tcp ack,
attack tcp stomp, attack method tcp,
attack tcp ysynack, attack tcp nfo,
attack method tcpfrag, attack method tcpall,
attack method tcpusyn, attack method asyn,
attack tcp lynx, attack method tcpxma

UDP
attack udp generic, attack udp vse,
attack udp dns, attack udp plain,
attack method udpgame

GRE attack gre ip, attack gre eth
APP attack app http, attack method ovh

attack method miscdestruct, attack app cfnull
GENERIC attack method std, attack method generic,

attack method misckill

also observe attempts to set up a proxy service that configures network traffic forwarding

on high ports.

TA6. Infected devices can degrade or damage IoT services not only for device owners but

also for network operators and device vendors. Additionally, they can facilitate criminal

activities by tunneling malicious traffic through infected devices or eavesdropping on local

network traffic.

5.3.6 C&C Analysis

We observe from the dynamic and static analysis that IoT malware can use P2P and central-

ized infrastructure for C&C communication. For example, Hajime [135] uses the Kademlia

overlay network, which is a P2P protocol. We also observe some malware using the Tor

network either for C&C call-back or for connecting to a cryptocurrency mining pool. For

centralized infrastructure, we find that IoT malware rely on hard-coded IPs rather than do-

mains, as shown in Table Table 5.3. We only observe 7K samples with DNS lookups, which

accounts for less than 7% of the network active samples. From network traces, we gather

306 unique domains and 10,895 IPs, which have a very small overlap. This reinforces

that IoT malware rely mostly on hard-coded IP addresses for C&C call-back. Lastly, we

102

observe that some IoT malware attempt to hide their DNS IP address resolution by using

DNS TXT records.

We investigate the domains and IP addresses using the pDNS dataset. Table Table 5.9

presents the top six malware families based on the infrastructure analysis described in sec-

tion 2.2. We rank the rows by the number of unique client IDs found in the pDNS dataset.

The columns are as follows, Labels is the AV family, Clients is the number of unique client

IDs, FQDN is the number of unique fully-qualified C&C domains, IP is the number of

unique C&C IPs, e2LD is the number of effective second-level C&C domains, Days is the

number of distinct days the C&C was queried, Samples is the number of malware, and Clus-

ter is the number of C&C clusters per family. We observe that the mirai samples are the

most active with 874 clients, 144 e2LD, 151 unique clusters, and 2,607 associated samples.

The next largest is gafgyt, which shares 63 clusters with mirai. Also, Figure Figure 5.5a

and Figure Figure 5.5b present the malware activity as seen from pDNS. We observe that

the lookup volumes are sporadic throughout the year, then for the period from November

to January, there is an uptick in lookup volume especially for the tsunami family.

Table 5.9: Top IoT malware clusters grouped by AV Labels.

Labels Clients FQDN IP e2LD Days Samples Cluster
mirai 874 229 369 144 269 2607 151
gafgyt 687 121 146 69 269 2727 73
chachaddos 300 2 7 2 253 2 1
hajime 156 4 3 3 265 2 3
NOLABEL 132 44 158 24 269 41 29
tsunami 112 41 48 18 268 263 34

TA7. Network detection of malware communication can prove to be difficult with P2P

channels and evasive DNS resolutions. However, the use of hard-coded IP addresses makes

IoT botnets less resilient to takedowns. IoT malware network activities can be difficult to

measure on the internet using DNS since very few samples rely on DNS.

103

0

25K Mirai

0

500 Gafgyt

0

50K Tsunami

0

20K
Chachaddos

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

2020-01
0

10 Hajime

Passive DNS Lookup Volume by Family

L
oo

ku
p

V
ol

um
e

(a) The number of queries per IoT malware fam-
ily cluster.

0

50

0

50

0

10

0

50

2019-05
2019-06

2019-07
2019-08

2019-09
2019-10

2019-11
2019-12

2020-01
0

10

Passive DNS Unique Client IDs by Family

N
um

be
r

of
 U

ni
qu

e
C

lie
nt

 ID
s

(b) The number of clients IDs per IoT malware
family cluster.

Figure 5.5: DNS measurement of domains for the top IoT malware family clusters based
on the pDNS dataset.

5.4 Case Studies

Motivated by our empirical results in section 5.3, we take a closer look at how IoT malware

reuses Mirai’s code to provide more context on attacks.

5.4.1 Code Reuse and Evolution

Bugs in the Source. During our dynamic analysis, we noticed a number of IoT malware

samples failed to run in the full-system emulation. Further investigation showed that the

samples would crash at the beginning of execution. These samples had their function sym-

bols stripped and only affected the MIPS-EL and ARM architecture. We tracked down the

issue to a set of faulty compilers that are used in the build script of the leaked Mirai code.

These compilers were specifically for ARMv6 and MIPS-EL architecture. To reproduce

the bug, we compiled a test program with the faulty compilers and ran them, but they did

not crash. However, when we passed the “strip” flag to the compiler, the binaries crashed

on execution. This bug was found in over 8,000 ARM samples from our dataset. More-

over, we reproduced this bug on real hardware by running the test program on two physical

devices, namely a Raspberry Pi 3 (ARM) and a GLiNet 300M (MIPS) router. The physical

hardware exhibited the same behavior as our full-system emulation.

Investigating additional malware samples that failed in the dynamic analyzer, we found

104

a set of traces that crash in the middle of execution. We analyzed the crash files and found

that a segmentation fault is generated when the malware attempts to hide its process name.

A snippet of the code is shown at the top of Figure Figure 5.6 based on Mirai’s code.

However, other samples did not have this bug, which used a different version of the code

shown at bottom of Figure Figure 5.6. The bug is caused by a fixed length buffer used to

store the process name, which only supports a maximum of 20 bytes including the path of

the binary. The newer code fixes this issue by using a variable-length buffer as shown in

the lower portion on line three of Figure Figure 5.6.

TA8. Mirai’s original code has distinct bugs that transcend into newer variants, but some

samples fix them. Although this evolution overall improves the stability of IoT malware,

many samples use Mirai’s code as a template, which can make them easier to detect by

signature-based techniques.

Corrupted DNS Resolutions. We found a large number of malformed DNS packets from

our dynamic analysis, which we initially assumed to be a misconfiguration in our analyzer.

We came across a set of samples that attempt to resolve a domain but created malformed

DNS packets. These samples had very similar system traces to the original Mirai code.

We investigated Mirai’s code and found an initialization bug that causes DNS queries to

be malformed. Specifically, the code does not initialize the buffer where the DNS query is

stored, which can contain random bytes from the device’s memory as padding. We found

this bug to affect all Mirai variants [187] in our study, and it appears to contribute to IoT

malware reliance on IPs instead of DNS for C&C call-back.

TA9. Since DNS resolution is unreliable for samples seen in the wild, this may explain the

use of hard-coded IP addresses for C&C call-back. Furthermore, given the evolutionary

trends observed in other components of Mirai’s code, a fix for the DNS resolution function

can make new variants more resilient to detection, blocking, and mitigation.

105

/ / Hide a rgv0 − Fixed Length Name (Bug)
n a m e b u f l e n = ((r a n d n e x t () % 4) + 3) * 4 ;
r a n d a l p h a s t r (name buf , n a m e b u f l e n) ;
name buf [n a m e b u f l e n] = 0 ;
u t i l s t r c p y (a r g s [0] , name buf) ;

/ / Hide a rgv0 − V a r i a b l e Length Name
n a m e b u f l e n = (r a n d n e x t () % (20 − u t i l s t r l e n (a r g s [0])))

+ u t i l s t r l e n (a r g s [0]) ;
r a n d a l p h a s t r (name buf , n a m e b u f l e n) ;
name buf [n a m e b u f l e n] = 0 ;
u t i l s t r c p y (a r g s [0] , name buf) ;

Figure 5.6: Mirai’s faulty evasion code (top) and the fixed code found in newer variants
(bottom).

5.4.2 Payload Hosting

Having identified the DNS bug in the Mirai code, we wanted to understand how some

samples used domains. We study the lifecycle of two different IoT malware C&C infras-

tructure, specifically, we pick iwantallthesmoke.club and str3sser.com from the top clusters

identified from Section subsection 5.3.6. We manually investigate these domains using

DomainTools and VT.

Str3sser Domain. The str3sser.com domain was registered by Namecheap on 2018-06-29

and was inactive for almost six months. On 2018-12-27, the domain records changed to

point to Cloudflare. There were two A (104.27.181.96 and 104.27.181.96) and two NS

records (liz.ns.cloudflare.com and jobs.ns.cloudflare.com) created. We speculate that these

records were for initial testing before going live because of the low DNS lookup volume

(average 16 lookups). After 79 days, the domain’s A (35.241.225.135 and 35.205.247.152)

and NS records (dns1.registrar-servers.com and dns2.registrar-servers.com) change to point

to Google cloud.

Approximately 50 minutes later, based on pDNS first seen resolution, the domain

is detected and reported to URLHaus. The domain remained active based on a screen-

shot captured nine days later but after 14 days the A records changed to a residential

IP address (72.5.65.111). Finally, after two days, the owner created five child labels

106

(cuteguyss, est1976, apneager, chivethethrottle, and aq) pointing to OpenDNS infrastruc-

ture (146.112.61.107) before the domain went offline. We base the shutdown evidence on

the abrupt change in pDNS lookups from hundreds a day (average 350 lookups) to zero.

The domain remained dormant with no lookups seen by pDNS sensors until it expired.

The domain was used for hosting the IoT malware payload, which is downloaded after

exploitation. The malware sample associated with this domain checks-in with the C&C

server using the hard-coded IP address 35.242.254.121 on port TCP/443 (not TLS). In this

case, the payload domain operated for approximately 16 days.

IWantAllTheSmoke domain. The iwantallthesmoke.club domain was registered by Namecheap

on 2019-01-10. A day later, one A record (185.141.24.211) is added to point to a virtual

private server (VPS) (Host Sailor Ltd.). Two days later, a screenshot of the domain’s front

page reads “me nah wan go jail.” On day three, 11 lookups are seen by pDNS and the do-

main goes dormant with no activity for five days. Then, on 2019-01-21 the domain updated

the A record (89.46.223.195) to point to another VPS (Zare.com). Approximately 50 min-

utes later, the domain is reported to URLHaus. The domain’s DNS lookups increased to an

average of 10 lookups per day, but three days later the lookups stopped. On the seventh day,

the domain was no longer available and only operated for six days before going offline.

However, this domain is one of five domains associated with the payload hosting server.

Using pDNS data, we observed four additional domains that were used throughout the

year (Jan’19 to Jul’19) pointing to IP address 89.46.223.195 and hosting similar payloads,

suggesting a rotation of payload domains. The malware sample checks-in with the C&C

server using the same IP address on port TCP/9285, but instead of resolving any of the

five domains the sample uses the hard-coded IP address. The domains are only used in

the initial exploitation followed by payload download. These observations suggest that

malware using domains for payload download rely on the device’s DNS resolution instead

of Mirai’s code. Recall, many of the exploits in Section subsection 5.3.2 rely on the device’s

system shell to download and run the payload, hence the DNS resolution is done by the

107

device, not the malware code.

TA10. IoT malware uses domains for payload hosting and rarely for C&C call-back. Al-

though payload hosting domains are short-lived (i.e. six and 15 days), their lifespan is

sufficient for IoT malware operation because the malware can efficiently infect many de-

vices. This suggests that domain takedowns only affect malware spreading but not the

botnet itself.

5.5 Discussion

This section will compare IoT malware and traditional malware to understand common

trends. We then present a qualitative assessment of current defensive techniques against IoT

malware to understand available security measures that can address IoT malware attacks.

5.5.1 Similarities and Differences

First, we observe that the majority of IoT malware is based on Mirai’s code. This is vastly

different from traditional desktop and mobile malware, where there are hundreds if not

thousands of desktop and mobile malware families. This observation suggests that offline

IoT malware detection (TA1) may be relatively easier than traditional malware because

a large majority of samples in the wild stem from a shared code base. However, similar

to traditional malware, polymorphism and anti-analysis (TA1) found in IoT malware can

be effective in evading signature-based detection. Although we only observe 3.3% of the

samples to use anti-analysis methods, we can only claim a lower bound.

The infection analysis (TA2 and TA3) suggests that IoT malware can be a bigger threat

than traditional malware. For example, desktop malware has more categories of infection

(drive-by, phishing, etc.), however, remote exploitation and default credentials for IoT mal-

ware apply to a larger set of architecture-agnostic internet-facing devices. Furthermore,

we predict as IoT devices advance, repackaging, drive-by, phishing, and removable media

will all be practical infection vectors that IoT malware may abuse. The payload analysis

108

results (TA4) show that IoT malware has already incorporated advanced polymorphic and

anti-analysis tactics, which suggests that we may see a wide adoption in the near future

similar to desktop and mobile malware. One difference from traditional malware, which

can be used against IoT malware, is the reliance on the device’s system shell, which can be

disabled or limited (i.e. seccomp).

Persistent analysis (TA5) shows that IoT malware has to deal with file system con-

straints not found on desktop or mobile systems. Yet, the unification of user-space, kernel-

space, and firmware removes layered protections found in traditional platforms, which can

allow IoT malware to have privileged access to the device’s hardware. This suggests that

although current persistent methods are limited, direct access to a device’s hardware can

enable stealthier persistence tactics that may require device replacement to remediate. The

capability results (TA6) present a spectrum of abuse that can range from infecting devices

by scanning and exploitation to more sophisticated such as information theft and network

traffic hijacking. The results in Table Table 5.6 show that some IoT malware families target

specific devices, which suggests that we may see more tailored IoT device targeting based

on the malware’s capabilities (rise of specialization). This is analogous to desktop malware

that specializes in financial crime, ransomware, and credential theft, for example.

Furthermore, IoT malware C&C communication results (TA7) show a mix of P2P and

centralized control infrastructure. Based on the abrupt IoT botnet activity observed on ISP

networks, botnet operators may shift to implement a similar layered C&C communication

approach to the Storm botnet [89] to achieve scalability, stability, and resilience. However,

IoT malware reliance on Mirai’s code may have hindered its potential due to inherited

bugs (TA8 and TA9). This is further evident by the fact that IoT malware operators use

DNS mostly for payload hosting (TA10). It appears based on the infrastructure analysis

in subsection 5.4.2, IoT malware operators have adapted to register multiple domains for

payload hosting. Since IoT malware uses a very noisy internet-wide scanning and infection

approach, the payload domains are quickly detected and blocked. On the other hand, it

109

seems that short-lived payload domains provide sufficient time for the botnet to spread

(TA10).

5.5.2 Stakeholders and Defenses

We identify three primary stakeholders, namely device owners, device vendors, and ISP

operators.

Device Owners. Device owners have limited options for detecting and removing IoT mal-

ware infections. Device owners, whenever possible, should disable internet-facing services,

change default credentials, and segment their network to mitigate some of the risk of in-

fection. Most device owners would reboot their device if it becomes unresponsive or the

quality of service degrades, which is also applicable to IoT malware infections. Although

most IoT malware may be cleaned up with a simple reboot, we have observed several in-

stances of IoT malware using more persistent methods (TA5). Moreover, re-imaging the

device with a trusted firmware may not be possible, is technically difficult, or can damage

the device. We believe the impact of this problem is much more serious than reported in

prior work [153]. Specifically, we speculate that the current reinfection rates are much

higher than what was measured in 2017/2018 (only 5%).

Device Vendors. Device vendors have end-to-end visibility that can provide early detection

and remediation of IoT malware infections. For example, device telemetry can help detect

system anomalies, device firmware can limit system shell interaction, containerization can

limit cross-process interaction, process whitelisting can allow only trusted processes to run,

remote attestation via trusted execution can guarantee a clean state, and client-server design

can limit the exposed services on the network, therefore reducing the attack surface. These

approaches may not all be cost-effective for vendors, but some features can be implemented

as default protections for embedded Linux to boost the overall security of Linux-based IoT

devices. Moreover, as vendors innovate in the IoT space, they must be mindful of future

attack surfaces. For example, future IoT devices may incorporate more human interac-

110

tions, which can inherit all the attacks from traditional malware such as phishing, drive-by

download, and application repackaging. More precisely, incorporating a browser in an IoT

device allows IoT malware to reuse attack tactics that are found in traditional malware.

ISP Operators. ISP operators can play an important role in IoT malware infection cleanup

as documented by Çetin et al. [153]. Besides using a walled garden for infected customers,

ISPs can hinder the infection by deploying IP blocking and redirection for known IoT C&C

or payload hosting servers. A more active approach would be for ISPs to intercept payload

delivery or C&C communication and instead deliver a therapeutic payload that cleans up

and disables vulnerable services transparently without the user involvement. However, this

approach requires careful planning and engineering to scale to large networks. Current

defenses at the ISP level can disrupt IoT malware infection breakouts, but this requires

close monitoring and measurements to detect such events.

5.6 Using Threat Analysis to Inform Risk Assessment

The large-scale study of IoT malware lifecycle yielded several takeaways. These takeaways

can inform our risk assessment scoring framework. We provide explicit examples of how

the takeaways adjust the risk-score metric. We will not use all the takeaways; the risk

score will be weighted based on a multiplicative factor. We will describe the risk scoring

methodology in chapter 6.

1. TA1 concludes that host-based detection security measure is not practical. We lin-

early increase the risk score for an IoT deployment over time to account for exposure.

2. TA2 finds that IoT threats evolve to exploit vulnerabilities on internet-facing and Net-

work Address Translation (NAT) configured devices. We increase the risk score for

devices with lax security measures on the Local Area Network (LAN) (unencrypted

and unauthenticated services).

3. TA3 infers that IoT threats can spread very quickly without user interaction because

111

most IoT devices are headless. We increase the risk score for devices without user

interfaces and expose network services.

4. TA6 concludes that infected IoT devices can proxy other cybercrime or attacks to

degrade critical internet services. We increase the risk score for always-on devices

with copious computational resources.

5.6.1 Targeted Devices In The Testbed

Our study identified many targeted IoT devices across different device types (CCTV, ICS,

and Smart-Home). We present a list of the top targeted devices in Table 5.5 and Table 5.6.

In the smart-home category, we find devices like Google Chromecast, VeraLite Hub, and

Belkin WeMo (Switch, Link, Motion, Crockpot). Our testbed, presented in chapter 3, has

deployed IoT devices for both the Belkin WeMo and VeraLite Hub. We found that the

VeraLite Hub is an EOL device with many critical and high vulnerabilities that persist with

the device. These vulnerabilities increase the risk of deploying a VeraLite Hub because we

empirically show that IoT malware actively targets the device. IoT malware also targets

the Belkin WeMo devices. However, the deployed instances of the Belkin WeMo devices

addressed the targeted vulnerabilities through a firmware update. These two examples

show the need for studying IoT malware at scale to identify trends in device targeting and

inform the risk assessment approach.

112

CHAPTER 6

RISK ASSESSMENT FRAMEWORK FOR IOT DEPLOYMENTS

The risk assessment framework aims to help practitioners prioritize security measures for

at-risk IoT deployments. A risk assessment framework can quantify risk based on vulner-

ability and threat analysis of an IoT deployment and provide a ranking. Practitioners can

use the ranking to prioritize their limited resources to implement optimal security mea-

sures strategically. The framework provides a basis for users to adjust the score calculation

based on their environmental needs. In this chapter, we will demonstrate an instance of

the framework, which can be subjective. However, the exercise aims to showcase how

users can use the framework to generate a risk score. The framework will highlight the im-

portance of conducting a comprehensive (chapter 3) and iterative (chapter 4) security and

threat (chapter 5) evaluation for risk assessment and prioritization of security measures.

6.1 An Informed Risk Assessment Model

Our first study in chapter 3 provides an overview of the vulnerabilities found in the com-

ponents of an IoT deployment. The study provides a holistic approach that accounts for

more attack vectors against IoT deployment than traditional security evaluations. Using

each component’s security properties (see subsection 3.0.1), we derive metrics contribut-

ing to each component’s risk score. There is a base score for each component that users

can adjust for vulnerability exposure period and exploitation by threats. The longitudi-

nal observations can adjust device risk score weight based on the exposure window or the

time delta between vulnerability identification and patching. For example, we find that

EOL devices do not address any of the vulnerabilities on the device, and we can increase

the weight of such devices to account for the exposure. We use the IoT malware lifecycle

study (see chapter 5) to adjust the weight on devices’s risk score that have actively exploited

113

vulnerabilities.

Device
Internet Pairing

Configuration

Upgrade

Services

Vulnerabilities

Mobile
Sensitive Data

Programming
Errors

Excess
Permissions

Cloud
Endpoint
Category

TLS
Configuration

Vulnerabilities

Network
Protocols

MITM
Vulnerabilities

Encryption

Figure 6.1: The main components of IoT deployment and their security properties.

6.2 Risk Assessment Framework

The following section defines key properties of the risk assessment framework, including

the security properties and the threat models. We describe the security properties for each

component. We define three threat model types and provide examples for how the threat

models can mount an attack against the device.

6.2.1 Overview and Terminology

We summarize the components and their security properties in Figure 6.1. Smart-home

devices have four main components:

1. The device - the hardware purchased (Alexa, SmartThings, Sonos, etc.).

2. The mobile application - the companion mobile application that interacts with the

device (Android or iOS application.)

3. Cloud endpoints - Internet services with which the device or the mobile application

communicates.

114

4. Network communication - Network traffic between each component (local and Inter-

net traffic).

For each component, we can use the following security properties to compute the risk

score:

Device Properties. The device properties are the following:

1. Internet Pairing - The configuration of network credentials to connect the device to

the Internet.

2. Configuration - The device configuration during the setup phase, creating an account,

and setting up preferences.

3. Upgrade - The device’s upgrade options (automatic, consent, or manual).

4. Services - Network services on the device, like UPnP, mDNS, and HTTP server.

5. Vulnerabilities - Vulnerable services on the device.

Mobile Application Properties. The mobile application properties are based on static and

dynamic binary analysis to identify three types of security issues:

1. Sensitive Data - Sensitive data includes artifacts like API keys, passwords, and cryp-

tographic keys that are hard-coded into the application.

2. Programming Issues - Implementation errors and incorrect use of libraries include

weak initialization vectors in cryptographic functions or guessable seeds to pseudo-

random number generators.

3. Excess Permissions - Mobile applications request excess permissions not required or

used in the application code.

Cloud Endpoints Properties. We use the device and the mobile application’s cloud end-

points for evaluation. There are three security properties:

115

1. Endpoint Categories - Endpoint categories define three main categories: first-party,

third-party, and hybrid. First-party domains are endpoints that are owned and man-

aged by the vendor of the product. Third-party domains are endpoints that use exter-

nal services like Google Maps. Hybrid domains are endpoints run on cloud infras-

tructure like Amazon or Azure but managed by the device vendor.

2. TLS Configuration - TLS configuration refers to the proper set up of TLS/SSL, in-

cluding using a trusted and valid certificate and avoiding legacy versions of TLS/SSL

with known vulnerabilities.

3. Vulnerabilities - Vulnerable services on the cloud endpoint includes cleartext authen-

tication, misconfigured services, exploitable services, or unsupported legacy operat-

ing systems as the host for the cloud endpoint.

Network Communication Properties. We use the network communication properties

observed between the three components; the smart-home device, the mobile application,

and the cloud endpoint. Each pair of components can have a network connection, namely

device-to-cloud (D2C), mobile application-to-device (M2D), and mobile application-to-

cloud (M2C). For each connection, there are three security properties:

1. Protocols - Inspect connections for the use of third-party DNS, HTTP, UPnP, NTPv3,

or custom protocols.

2. MITM Vulnerabilities - Identifies whether the communication is vulnerable to MITM

attacks.

3. Encryption - Identifies whether the communication uses encryption.

6.2.2 Threat Model and Attacker Types

We define three types of attackers. We categorize them by their accessibility to the device

component.

116

Attacker Types

Type 1: LAN Attacker. The LAN attacker is on a network where the devices are deployed

and can carry out direct attacks. This attacker is the most capable since they can access

device services on the local network.

Type 2: Internet Attacker. An Internet attacker can access only Internet-facing devices.

The attacker does not have direct access to the local network, but they can use software

vulnerabilities, known flaws, or default credentials to exploit Internet-facing devices to

access the local network. Although we consider a Type 2 attacker less capable than Type 1,

a Type 2 attacker can become a Type 1 attacker by pivoting from a compromised Internet-

facing device to the LAN.

Type 3: Nearby Attacker. A nearby attacker is physically near the deployed device but

does not have direct physical access (malicious neighbor). A Type 3 attacker can perform

attacks against the initial device setup or using a low-energy medium, such as Bluetooth,

Zigbee, or ZWave. Although Type 3 attacker is less capable than Type 1, they can access

the LAN through a compromised device (become Type 1 attacker) via flaws in low-energy

protocols.

Attack Examples

We provide examples of how the three types of attackers can target devices on the network.

1. Internet Pairing - A nearby attacker (Type 3) hijacks the configuration setup over in-

secure Wifi or low-energy (Bluetooth, Zigbee, ZWave) protocols. A device is secure

if it requires manual credentials input or a wired connection.

2. Configuration - An attacker (Type 1 or 2) knows a device’s default configurations

and uses this information to attack the device. A device that requires configuration

before operating is more secure.

117

3. Services - An attacker can directly access unauthenticated services locally (Type 1)

or on the Internet (Type 2). A client-mode device that runs no services is more secure.

4. Vulnerabilities - An attacker can use one or many vulnerabilities on the device to ex-

pose sensitive information or gain control. The vulnerabilities are in four categories;

critical, high, medium, and low CVSS. The critical and high categories mean the

vulnerability can lead to a complete or partial device takeover. The medium category

means there are misconfiguration issues that could disclose sensitive information,

which may lead to a device takeover. The low category means the device has minor

issues, such as supporting a weak hashing algorithm in encrypted services.

6.3 Risk Model

This section formalizes the risk model and provides examples of risk assessment. The risk

model has two types of scores; a base score and a weighted score. The base score provides a

risk score for each component (device, mobile, cloud, and network) in an IoT deployment.

We calculate the risk score from the security properties in subsection 3.0.1.

6.3.1 Base Risk Score

The base score is a composite normalized score between zero and one that accounts for

each security propriety. A higher base score indicates a higher risk component, and a lower

base score indicates a lower-risk component. Formally, we can calculate the base score for

118

the device using the following equation:

Devicebase score =
Pairingscore + Configscore + Upgradescore + Servicesscore + V ulnerabilityscore
Pairingtotal + Configtotal + Upgradetotal + Servicestotal + V ulnerabilitytotal

Pairingscore = max(WiFi, LE,Wired,Manual)

Configscore = max(Default, Forced)

Upgradescore = max(Manual, Consent, Auto)

Servicesscore(x) = Servicestotal ∗ Importance

V ulnerabilityscore = CV SSscore(level = Critical) + CV SSscore(level = High) + CV SSscore(level = Medium) + CV SSscore(level = Low)

CV SSscore(level) = CV SStotal(level) ∗ Importance

(6.1)

We can assign points based on the importance of each security property. For example, we

can assign a value to each pairing method. If devices that pair (connect to the Internet)

using WiFi are risky in the network, we can assign a large value to WiFi pairing method

that will reflect the risk for devices using WiFi pairing. We can also assign values between

zero and 100 to Importance for the Services and CVSS categories that accounts for the

deployment environment. For example, if a device has five or more network services but is

in an isolated Virtual Local Area Network (VLAN), then we assign an Importance value

of 25%. Additionally, if critical CVSS vulnerabilities are very risky to a network, we can

assign higher values to the Importance variable. Similarly, we can calculate the risk score

for the other components using the following equations:

Mobilebase score =
Datascore + Programscore + Privilegescore
Datatotal + Programtotal + Privilegetotal

Cloudbase score =
Domainscore + TLSscore + Servicesscore
Domaintotal + TLStotal + Servicestotal

Networkbase score =
Protocolscore +MITMscore + Encryptionscore

Protocoltotal +MITMtotal + Encryptiontotal

(6.2)

6.3.2 Risk Score Adjustment: Exposure

The longitudinal security evaluation results can adjust the score categories and weights

using temporal features. In this instance of the scoring system, we will only consider the

119

device category since our longitudinal analysis only studied the device component over

time. However, we can apply a similar exercise to other components with a longitudinal

security evaluation. We define a metric to account for the exposure of vulnerabilities found

on the device as Ew. Since the exposure weights impact the vulnerability category of the

device score, we adjust only the V ulnerabilityscore variable. We use the device base score

equation (Equation 6.1) to incorporate the exposure weights (Ew).

V ulnerabilityweight score = Ew ∗ V ulnerabilityscore (6.3)

6.3.3 Risk Score Adjustment: Threats

Next, we want to use the IoT malware insights to inform our risk model. IoT malware

analysis focuses on IoT device targeting, which accounts for the device and network com-

ponents and excludes the mobile and cloud components. However, for the network compo-

nent, we include any network communications that involve the device, like mobile application-

to-device (M2D) and device-to-cloud (D2C). The framework in chapter 5 describes five

stages of the IoT malware lifecycle: infection, payload, persistence, capability, and com-

munication. We use the analysis from the infection stage to adjust the security base score

using an attack weight variable Aw. Similar to the longitudinal analysis, we increase the

risk level if a device has a vulnerability that malware actively targets. We adjust the device

exposure score equation (Equation 6.3) to incorporate the attack weights (Aw).

V ulnerabilityweight score = Aw ∗ Ew ∗ V ulnerabilityscore (6.4)

In addition to the device, we adjust the base score equation (Equation 6.2) for the

120

network component to account for the attack weights.

Networkweight score =
Protocolweight score +MITMweight score + Encryptionweight score

Protocoltotal +MITMtotal + Encryptiontotal

Protocolweight score = ThirdPartyDNSscore + CustomProtscore + Aw ∗ UPnPscore + Aw ∗HTTPscore +NTPv3s

MITMweighted score = Aw ∗D2Cscore +M2Cscore + Aw ∗M2Dscore

Encryptionweighted score = Aw ∗ ED2Cscore + EM2Cscore + Aw ∗ EM2Dscore

(6.5)

We apply the attack weights to clear-text protocols (UPnP and HTTP) because they offer

no security features. An attacker (Type 1) can abuse these protocols without exploitation.

The weights applied to the Equation 6.3 and Equation 6.5 can result in the risk score being

greater than one. To remediate this, we apply the Min function to bound the risk score (x)

between zero and one. The Min function is the following:

f(x) = min(x, 1) (6.6)

6.3.4 Risk Assessment Example

Base Risk Score

We calculate the base risk score for the VeraLite device. We will assume a Type 1 attacker

(LAN access) for this risk assessment. The VeraLite pairs using a wired connection, default

configuration, and manual update. The VeraLite exposes four network services on the LAN.

The VeraLite has two critical, one high, two medium, and three low CVSS vulnerabilities.

We present each security category’s values in Table 6.1. We assign ten points per category

and set the importance preference for each security property. We multiply the total category

by the importance factor to get the score column. We can now use the score values directly

into Equation 6.1 to calculate the risk score.

121

Table 6.1: Example of point assignment for the VeraLite device

Category Total Points Importance Score
Pairing 10 30% 3
Configuration 10 100% 10
Upgrade 10 100% 10
Services 10 75% 7.5
Vulnerable Low 10 30% 3
Vulnerable Medium 10 50% 5
Vulnerable High 10 70% 7
Vulnerable Critical 10 80% 8
Total 80 - - 53.5

Devicebase score =
Pairingscore + Configscore + Upgradescore + Servicesscore + V ulnerabilityscore
Pairingtotal + Configtotal + Upgradetotal + Servicestotal + V ulnerabilitytotal

Devicebase score =
53.5

80
= 0.67

Weighed Risk Score

Next, we assign values to the exposure period (Ew) and active attack (Aw) weights. Note,

users can adjust the exposure and active attack weights for specific environments. In this in-

stance, we define the exposure weights based on a flat network as shown in Figure 3.3. The

following are the weight assignment for each exposure period: justify the below, clearify

type 1

1. Exposure for less than one month should reduce the score by 20% because device

update addresses vulnerability and reduces the exposure period.

2. Exposure between one and three months should reduce the score by 10% because

device update addresses vulnerability and reduces the exposure period.

3. Exposure between three and six months should increase the score by 10% because

delayed device update addresses vulnerability but increases the exposure period.

4. Exposure over six months should increase the score by 30% because device update

never addresses the vulnerability, and the exposure period is indefinite.

122

For the active attack weight, we increase the targeted vulnerability by 50%. We summarize

the weight assignment in Table 6.2.

Table 6.2: A summary of assigned weights to exposure and attack variables

Category Description Weight Weight Factor

Exposure
Less than 1 month -20% 0.80
Between 1 and 3 months -10% 0.90
Between 3 and 6 months 10% 1.1
More than 6 months 30% 1.3

Attack Actively Exploitation 50% 1.5

The following is an example of a weighted risk score using the VeraLite device:

V ulnerabilityweight score = Aw ∗ Ew ∗ V ulnerabilityscore

V ulnerabilityweight score = 1.5 ∗ 1.3 ∗ V ulnerabilityscore

V ulnerabilityweight score = 1.5 ∗ 1.3 ∗ (23) = 44.85

Deviceweight score =
75.35

80
= 0.94

We assign a 1.3 weight factor to Ew since the VeraLite device is EOL with an exposure

period of over six months. We assign a 1.5 weight factor to Aw because IoT malware is

actively targeting a critical CVSS vulnerability on the VeraLite device. The weighted score

increases the risk level by 40% from 0.67 to 0.94.

6.4 Case Study

We demonstrate how to calculate the risk score for multiple devices from the same ven-

dor. Additionally, we demonstrate the impact on risk scores using longitudinal and threat

analysis features.

6.4.1 Multiple Devices, One Vendor

In this case study, we will look at the Belkin devices that include the Belkin Netcam, Belkin

WeMo Link, Belkin WeMo Motion, Belkin WeMo Switch, Belkin WeMo Crockpot. We derive

123

the security property values from Table 3.4, Table 3.6, Table 3.7, and Table 3.8. We assign

importance factors based on our deployment environment Figure 3.3.

Table 6.3: The risk scores for the Belkin WeMo Devices.

Name Device Mobile Cloud Network
Netcam 0.14 0.46 0.61 0.39
Link 0.21 0.38 0.34 0.46
Motion 0.19 0.38 0.07 0.46
Switch 0.19 0.38 0.45 0.46
Crockpot 0.29 0.38 0.58 0.36

In Table 6.3, we present the risk scores for comparison. Our component-based frame-

work highlights the variation in risk across different components for devices from the same

vendor. Surprisingly, the results show that the device risk levels are inconsistent for a sin-

gle vendor. For example, the cloud component risk score for all five devices ranges from

0.07 to 0.61. The mobile and network component is more consistent, ranging from 0.38

to 0.46 and 0.39 to 0.46, respectively. The mobile components’ consistency is because the

four products use the same mobile application. We can see a correlation between the mo-

bile and network components since the network protocols enable communication between

the device and the mobile application. We hypothesize that a vendor builds their products

consistently using a predefined pipeline. However, our results show that each product has

varying security issues contributing to the risk score in Table 6.3.

6.4.2 Incorporating Exposure and Attack Weights

This case study demonstrates how temporal and threat analysis can better prioritize insecure

devices. To do so, we compare the base risk score of four devices with their weighted

exposure and attack risk score. In Table 6.4, we calculate the risk score for four devices;

VeraLite, nVidia Shield, Apple TV, and D-Link Camera. We calculate the base risk score

using Equation 6.1 and the weighed exposure and attack risk score using Equation 6.3. We

use the weights defined in Table 6.2.

The VeraLite device and network risk score increases due to long vulnerability exposure

and active malware attacks that target the vulnerabilities. This device has the highest risk,

124

Table 6.4: The base risk score and temporal and threat weighed risk score for four devices.

Name
Base Temporal & Threat

Device Network Device Network
VeraLite 0.67 0.54 0.94 0.68
nVidia Shield 0.40 0.14 0.40 0.14
Apple TV 0.12 0.11 0.23 0.11
D-Link Camera 0.38 0.21 0.39 0.32

and we should prioritize its security measure over other devices. Notably, the device has a

critical CVSS vulnerability (CVE-2013-4861) that IoT malware threats target. The nVidia

Shield risk score does not change, although the device has medium CVSS vulnerabilities

that have more than six months of exposure. The device component had a low CVSS

vulnerability that the vendor fixed, which lowered the risk score. However, because the

medium CVSS vulnerabilities remain, the exposure weight factor compensates for the low

CVSS vulnerability. An internal risk score change did not affect the overall device score.

The exposure and attack weights did not impact the nVidia Shield network component.

The Apple TV device risk score increased by almost 100% but remained the lowest

relative to other devices. The device had a high CVSS vulnerability with three months of

exposure. The vulnerability was a TCP/IP Initial Sequence Number (ISN) Reuse Weakness,

see Figure 4.2. An ISN tracks the order of messages sent between two endpoints. The reuse

of ISN vulnerability allows an attacker to predict the next ISN. If the attacker successfully

guesses the ISN, they can send spoofed messages to disrupt communication, steal data, or

gain unauthorized access. However, because the exposure period was three months, the

weight factor for this vulnerability is 0.9, which reduces the risk score. The factor is less

than one since the vendor addressed the vulnerability within three months. The risk score

for the network component of the Apple TV did not change.

The last example is the D-Link Camera device. The risk score for the device and net-

work component increased. The device risk score increased because there is a low CVSS

vulnerability (see Figure 4.4) that had more than six months of exposure. The device’s risk

score increased due to the long exposure period. The network risk score also increased,

125

but the increase is due to the attack weight since the device uses Universal Plug and Play

(UPnP), is susceptible to MITM for Mobile-to-Device communication and does not use

encryption for Mobile-to-Device communication. A network malware threat (Type 1) can

attack the device’s communication by intercepting or modifying the traffic between the mo-

bile application and the device. Our risk score framework is an example that practitioners

can customize to fit their deployment environment. As we stated before, the risk scoring

in this instance may be subjective; however, the framework’s purpose is to provide a ba-

sis for practitioners to calculate the risk of their IoT deployments and prioritize security

measures.

126

CHAPTER 7

CONCLUSION

Risk assessment frameworks are pivotal in effectively guiding organizations to prioritize

their efforts and resources. However, these frameworks’ efficacy intrinsically depends on

the quality of empirical data. A comprehensive understanding of the vulnerabilities and

threats associated with IoT deployments, enriched by context-aware insights, is paramount

to the accuracy and reliability of risk assessment outcomes. Consequently, this interde-

pendence necessitates continuously pursuing up-to-date, pertinent knowledge to enable in-

formed decision-making and foster robust IoT security risk assessment. This body of work

has shown that comprehensive and iterative vulnerability and threat analysis at scale im-

proves the risk assessment of IoT deployments. In this chapter, we delve into additional

facets of IoT vulnerabilities and threat intelligence, emphasizing the criticality of empiri-

cal data in shaping and refining risk assessment frameworks. Lastly, we will highlight the

broader impact of our research on the academic community and industry.

7.1 Risk Assessment and Empirical Data

This work introduced a systematic security evaluation framework to identify vulnerabilities

in IoT deployment. The framework provides a more comprehensive view of IoT deploy-

ments by accounting for the device, companion mobile application, cloud backends, and

network communication. We then applied the security evaluation framework iteratively

for one year and characterized the vulnerabilities that impact IoT devices’ lifecycle. We

derived insights for vulnerability exposure time and incorporated them in our risk score

framework to provide more accurate risk levels for IoT deployments. We then applied

empirical threat analysis insights to enhance our risk assessment framework further and

improve the accuracy of risk levels. Evidently, The more empirical observations we collect

127

on IoT deployment vulnerabilities and threats, the more accurate our risk assessment re-

sults will be. To that end, we propose future studies to uncover additional facets to improve

the risk assessment of IoT deployments.

7.1.1 Understanding Attacks and Abuse on IoT Deployments

Understanding how attackers abuse IoT devices can provide essential insights to inform

risk assessment accurately. For example, identifying the most targeted type of IoT devices

and how they contribute to the attack chain can help practitioners monitor similarly targeted

assets in their environment. We can adjust the risk models to account for highly targeted

device types from a risk assessment perspective. Moreover, understanding the attacker’s

behavior on the device can help identify intentions and potential attack paths that can im-

pact other assets on the same network. For instance, if the attacker installs software on the

device or only uses the device to relay traffic may signal different intentions. One looks

to persist on the device (long-term infection), while the other looks to use the device as a

redirector (proxy). These intentions inform the risk of different attack types, and we can

use that to revise the IoT deployment risk models.

Conducting such a study is challenging. The diversity of device types hinders the scal-

ability of many approaches. We must rely on software emulation or simulation of devices

to achieve scalability. However, emulation and simulation are low-fidelity approaches that

many attackers can detect and evade. Moreover, threats evolve and adapt to detect and

evade defensive and measurement systems. We must develop a technique to identify new

defensive and evasive tactics and notify us to analyze and understand the new tactics auto-

matically. Finally, the threat intelligence gathered from these measurement systems must

be vetted for deceptive behavior. Identifying deceptive behavior is challenging and may

require the system to correlate historical events.

128

7.1.2 A Longitudinal Security Evaluation of IoT Cloud Backends

Our initial security evaluation of IoT deployment found that cloud backends have many se-

curity issues. Moreover, devices from the same vendor can use different instances of cloud

backends with varying vulnerabilities and exposure. These backends change frequently

and may be different for various geographically deployed devices. These inconsistencies

can create gaps and additional complexities that IoT operators must consider in their risk

assessment. In particular, these backends are critical in facilitating data processing, stor-

age, and device management. Characterizing their security over time can inform the risk

assessment models by accounting for external risks to IoT deployments.

There are several challenges to evaluating the security of IoT cloud backends. Every

device has unique services and capabilities that are often cloud supported. For example,

home assistant devices use machine learning models to respond to voice commands. Other

devices may use cloud backends as a management interface to command IoT devices to

perform functions like unlocking a door or turning on or off a light. Developing a general-

izable approach to account for the diversity in custom backend functionality is challenging.

In addition, the use of encryption between device and cloud backends makes it challeng-

ing to inspect the connections and evaluate their security. For longitudinal analysis, cloud

backend churn must be tracked and cataloged throughout the evaluation period. As devices

update or cloud outages happen, the devices often rely on redundant cloud backends that

we need to account for in the evaluation. Lastly, legal and ethical considerations are of

utmost importance when evaluating the security of cloud backends. Since we do not have

ownership or permission to probe the cloud backends actively, we must carefully design

our measurement techniques to be passive and non-disruptive.

7.1.3 Understanding Attacks on The IoT Software Supply Chain

Software developers rely on libraries and modules to speed up development. These mod-

ules can contain vulnerabilities that may impact IoT firmware. Studying the attacks that

129

can impact the software supply chain for IoT deployments, like the device firmware and

mobile applications, can identify external risks. These potential vulnerabilities can impact

many types of IoT devices. Identifying if a particular IoT deployment depends on a highly

vulnerable library that can inform IoT operators of high-risk devices and prioritize their

security measures. A large-scale study on the software supply chain of IoT firmware and

mobile applications can inform risk models to account for latent software vulnerabilities.

There are several challenges to studying the IoT software supply chain. Many IoT de-

vices are closed-source, or their firmware is not publicly available. We must leverage binary

analysis and hardware reverse engineering to extract and analyze the firmware software to

address this challenge. Moreover, the binary analysis techniques must account for varying

system architectures. Additional challenges must be addressed within the binary analysis

to identify library and module dependencies accurately. These challenges include inferring

compiler optimization, identifying code modules, and matching the modules to third-party

libraries. Lastly, this effort must be large-scale to account for the many software libraries

and the combination of different software interactions.

7.1.4 An Automated and Iterative Security Evaluation Framework for LE IoT Protocols

Low-energy protocols are widely used in IoT devices. A security evaluation of these pro-

tocols can identify potential vulnerabilities that further improve the risk assessment model.

For example, Bluetooth, ZigBee, and ZWave are LE protocols that IoT devices use for

authentication, sending sensitive data, and controlling peripheral devices. Prior work [21]

shows the impact of such vulnerabilities on large IoT deployments. Therefore, to account

for various threat models, like type 3, a continuous evaluation of LE protocols can identify

more vulnerabilities that impact IoT deployments.

There are several challenges in developing an automated methodology to evaluate LE

protocols. The diversity of protocols and variation of protocols require a substantial en-

gineering effort. We require specialized radio hardware to monitor and study these LE

130

protocols. Additionally, automating the LE monitoring tools is challenging for many de-

vices near. For example, if many devices use the same LE protocol, we must differentiate

between signal beacons, which require advanced signal processing techniques. Lastly, we

want to democratize the tools for automating security evaluation. To do so, we must utilize

affordable hardware, which may have low-fidelity signal processing, and provide support

for different protocol versions.

7.2 Broader Impact of Empirical Studies

Beyond the risk assessment application, our empirical studies have a broad impact.

7.2.1 Security Evaluation of Home-based IoT Deployments

We built a state-of-the-art testbed of off-the-shelf home-based IoT devices and evaluated

their security. In doing so, we captured the entire evaluation process by recording the full-

packet captures from 45 diverse home-based IoT devices. We thoroughly documented our

methodology and device configurations, which we make public to researchers and prac-

titioners. We created a dedicated resource known as YourThings1 to host the experiment

artifacts. Since then, YourThings has garnered the attention of the research community,

consumer technology advocacy groups, acclaimed media, and practitioners from the In-

ternet Engineering Task Force (IETF). Our paper, which appears in the proceeding of the

2019 IEEE Security & Privacy, and dataset have accumulated over 300 citations and used

in over 20 projects by the academic community. The dataset of 150GB of full-packet net-

work capture traces has been downloaded over 130 times. Consumer technology advocacy

groups, such as the Wirecutter, have used our data and methodology to inform consumers

about secure IoT devices and provide recommendations. Our work has been featured in ac-

claimed media such as Newsweek and the New York Times, which disseminate technical

material to wider audiences.
1https://yourthings.info

131

https://yourthings.info

Academic Impact

To highlight the impact of the citations beyond the numerical count, Table 7.1 shows the

publication societies (conferences and journals) for the works that cite YourThings. We

can see that IEEE society is the highest, followed by ACM, Springer, and Elsevier. These

publication societies are among the most active in the field of computer engineering and

computer science. Additionally, eight book series have referenced our work. Our work has

had a broad impact on the research community with citations from areas in privacy, sys-

tem design, network security, energy, human-computer interaction, measurements, access

control, digital health, artificial intelligence, cyber forensics, and software testing to name

a few. The “Other” category includes dissertations, technical reports, Arxiv papers, and

miscellaneous digital publications citations. It is clear from Table Table 7.1 that the impact

of our work on academic research is substantial.

Table 7.1: Citation sources by societies.

Publication Societies Citations
IEEE 67
ACM 29
Springer 15
Elsevier 10
Usenix 9
NDSS 2
Others 172
Total 304

Applied Research

To provide more concrete examples of how our work has impacted research, Table 7.2

presents a sample of 15 works that incorporate our dataset into their research. Specifi-

cally, these research projects span different applications such as device identification, be-

havior detection and classification, security and privacy device labels, IoT authentication

techniques, device behavior transparency, and surveys on security assessments and device

132

identification. These publications appear in various top security venues like IEEE S&P

(Oakland) and NDSS. Beyond academic works, our dataset has been used by practition-

ers in the industry. McAfee detection engineers used our dataset to prototype certificate

signatures to reduce false positives when identifying IoT device traffic. We worked with a

McAfee security engineer to answer questions about our dataset and how they can extract

certificates associated with each device’s communication. Hamilton Beach, an appliance

manufacturer, leveraged our systematic security evaluation methodology to vet cloud plat-

forms they intended to use with their smart-home connected products. Lastly, our dataset

is helping researchers define a protocol for sending DNS messages over the Constrained

Application Protocol [211].

Table 7.2: A sample of 15 academic research projects using the YourThings dataset.

Paper Year Application
HomeSnitch [212] 2019 Identifying and Controlling IoT Behavior
Storming the Kasa [213] 2019 Reproducibility of Security Evaluation
Hestia [214] 2019 Defining Least Privilage Network Policy
Ask the Experts [215] 2020 Security and Privcy Device Labels
PingPong [216] 2020 Automated Device Signature Identification
ML Traffic Classification [217] 2020 IoT Traffic Classification
Automated Standards [218] 2020 Automation of Security Assessment
IoTFinder [137] 2020 DNS-based Device Identification
IoT ETEI [219] 2021 Device Identification
FIAT [220] 2021 Improved IoT Authentication System
ByteIoT [221] 2021 IoT Device Identification
Standards and Technology [222] 2021 Survey on IoT Security Evaluation
Survey on Device Behavior [223] 2021 Survey on IoT Device Behavior Identification
PinBall [224] 2021 IoT Device Event Identification

Improving Consumer Security

The Wirecutter has incorporated our methodology and evaluation results to recommend

secure light bulbs to consumers [225]. We worked with Hamilton Beach, a consumer ap-

pliance company, to apply our security assessment methodology and identify secure IoT

deployment practices. We worked with Aura, a digital identity management company to

recommend techniques for identifying and securing deployed home-based IoT devices run-

ning inside their customers’ networks.

133

News Outlets

Our work has been featured in a Newsweek piece about the security and privacy of home-

based IoT devices [226]. The article highlights the evolution of home-based IoT products

and the risk associated with using these internet-connected devices. The New York Times

featured our work on Amazon’s Sidewalk project that uses nearby Amazon home-based

IoT devices to share internet connections [227]. The article describes the new feature,

informs users how to turn it off, and highlights our work to provide a security and privacy

perspective. The Verge featured our work in reference to the privacy issues found in the

Anker Eufy Security Camera. Eufy claimed the video feed is end-to-end encrypted (E2EE);

however, that was not what the case [228].

7.2.2 Large-Scale Analysis of the IoT Malware Lifecycle

To prepare for future IoT attacks, we created a dedicated website called BadThings2 for re-

searchers to study IoT malware threats in-the-wild. The broader impact of our research on

the IoT malware lifecycle spans multiple dimensions. It has a far-reaching influence within

the cybersecurity community and across various multidisciplinary fields. Our work on the

large-scale analysis of IoT malware and the subsequent release of our binary analysis plat-

form, binary files, and analysis artifacts have fostered a collaborative environment among

researchers worldwide, enhancing the security posture of IoT devices and networks. Our

paper has garnered significant attention in the research community. It has been cited over

45 times in papers appearing in top venues, reflecting its substantial influence on the field.

Furthermore, our website was accessed by over 1,200 researchers from ten different coun-

tries, including the US, China, Germany, Canada, Japan, Singapore, Hong Kong, Indonesia,

the Netherlands, and South Korea. This global engagement underpins the importance and

applicability of our research findings and tools in diverse contexts.

The insights gained from our research can be applied across multiple fields. For exam-

2https://badthings.info

134

https://badthings.info

ple, our findings can inform policymakers and regulators to devise more stringent security

standards for IoT devices. Additionally, our work can be utilized by IoT device manufactur-

ers to develop more secure products, minimizing the risk of future large-scale IoT malware

infection breakouts. The international interest in our research has fostered collaboration

and knowledge sharing among researchers from diverse backgrounds. This collaborative

environment can help accelerate advancements in IoT security, malware defense, and in-

novative solutions to emerging threats. The resources we have released serve as valuable

tools for educating and training the next generation of cybersecurity professionals, equip-

ping them with the skills and knowledge necessary to tackle the evolving threat landscape

in IoT and related fields. By sharing our binary analysis platform, binary files, and analysis

artifacts, we have contributed to open science, which promotes transparency, reproducibil-

ity, and accessibility in research. This approach helps to accelerate the pace of innovation

and discovery in the cybersecurity field and democratizes access to all.

7.3 Closing Remarks

This dissertation aims to combine real-world security evaluation observations and malware

threat analysis to quantify the risk and prioritize security measures for IoT deployments.

We have shown that a systematic framework can identify more vulnerabilities in different

components of an IoT deployment. We conducted a longitudinal security evaluation of IoT

devices and showed how vulnerability exposures could increase the risk level of IoT de-

ployments. We conducted a large-scale analysis of the IoT malware lifecycle to inform our

risk assessment model with threat data. We demonstrated how the risk assessment model

could prioritize high-risk devices based on vulnerabilities, exposure, and threats. Finally,

we highlight the broader impact of our empirical studies and results on the academic com-

munity, industry, and consumer advocacy groups.

135

REFERENCES

[1] M. Antonakakis et al., “Understanding the mirai botnet,” in Proc. of the 26th USENIX
Security, Vancouver, BC, Canada, Aug. 2017.

[2] M. Barnes, Alexa, are you listening? https://labs.mwrinfosecurity.com/blog/alexa-
are-you-listening, 2017.

[3] Clinton, Ike and Cook, Lance and Banik, Shankar, A Survey of Various Methods
for Analyzing the Amazon Echo, https://vanderpot.com/Clinton Cook Paper.pdf,
2016.

[4] B. Ur, J. Jung, and S. Schechter, “The current state of access control for smart
devices in homes,” in Workshop on Home Usable Privacy and Security (HUPS),
2013.

[5] C. Wuesst, How my TV got infected with ransomware and what you can learn
from it, https : / /www.symantec .com/connect /blogs /how- my- tv- got- infected-
ransomware-and-what-you-can-learn-it, 2015.

[6] A. Chapman, Hacking into Internet Connected Light Bulbs, https://www.contextis.
com/blog/hacking-into-internet-connected-light-bulbs, 2014.

[7] B. Rodrigues, ARRIS Cable Modem has a Backdoor in the Backdoor, https://w00t
sec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html, 2015.

[8] J. Max, Backdooring the Frontdoor Hacking a ”perfectly secure” smart lock. https:
//media.defcon.org/DEFCON24/DEFCON24presentations/DEFCON-24-Jmaxxz-
Backdooring-the-Frontdoor.pdf, 2016.

[9] Y. Tian et al., “Smartauth: User-centered authorization for the internet of things,”
in Proc. of the 26th USENIX Security, Vancouver, BC, Canada, Aug. 2017.

[10] J. Obermaier and M. Hutle, “Analyzing the security and privacy of cloud-based
video surveillance systems,” in Proc. of the 2nd ACM IoTPTS, 2016.

[11] S. P. Kavalaris and E. Serrelis, “Security issues of contemporary multimedia im-
plementations: The case of sonos and sonosnet,” in The International Conference
in Information Security and Digital Forensics, 2014.

[12] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis, “A large-scale
analysis of the security of embedded firmwares.,” in Proc. of the 23rd USENIX
Security, San Diego, CA, Aug. 2014.

136

https://labs.mwrinfosecurity.com/blog/alexa-are-you-listening
https://labs.mwrinfosecurity.com/blog/alexa-are-you-listening
https://vanderpot.com/Clinton_Cook_Paper.pdf
https://www.symantec.com/connect/blogs/how-my-tv-got-infected-ransomware-and-what-you-can-learn-it
https://www.symantec.com/connect/blogs/how-my-tv-got-infected-ransomware-and-what-you-can-learn-it
https://www.contextis.com/blog/hacking-into-internet-connected-light-bulbs
https://www.contextis.com/blog/hacking-into-internet-connected-light-bulbs
https://w00tsec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html
https://w00tsec.blogspot.com/2015/11/arris-cable-modem-has-backdoor-in.html
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Jmaxxz-Backdooring-the-Frontdoor.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Jmaxxz-Backdooring-the-Frontdoor.pdf
https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEFCON-24-Jmaxxz-Backdooring-the-Frontdoor.pdf

[13] D. Lodge, Steal your Wi-Fi key from your doorbell? IoT WTF! https://www.pente
stpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/,
2016.

[14] L. Franceschi-Bicchierai, Hackers Make the First-Ever Ransomware for Smart Ther-
mostats, https:/ /motherboard.vice.com/en us/article/aekj9j/internet- of- things-
ransomware-smart-thermostat, 2016.

[15] C. O’Flynn, A Lightbulb Worm? http://colinoflynn.com/wp-content/uploads/2016/
08/us-16-OFlynn-A-Lightbulb-Worm-wp.pdf, 2016.

[16] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging smart home
applications,” in Proc. of the 37th S&P Oakland, San Jose, CA, May 2016.

[17] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash,
“Flowfence: Practical data protection for emerging iot application frameworks.,” in
Proc. of the 25th USENIX Security, Austin, TX, Aug. 2016.

[18] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, Smart Nest Thermostat: A Smart
Spy in Your Home, https://www.blackhat.com/docs/us-14/materials/us-14-Jin-
Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf, 2014.

[19] S. Morgenroth, How I Hacked my Smart TV from My Bed via a Command Injection,
https: / /www.netsparker .com/blog/web- security/hacking- smart- tv- command-
injection/, 2017.

[20] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Security implications of per-
mission models in smart-home application frameworks,” in Proc. of the 38th S&P
Oakland, San Jose, CA, May 2017.

[21] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes nuclear: Creat-
ing a zigbee chain reaction,” in Proc. of the 38th S&P Oakland, San Jose, CA, May
2017.

[22] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphinattack: Inaudible
voice commands,” in Proc. of the 24th ACM CCS, Dallas, TX, Oct. 2017.

[23] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in the internet
of things,” in Proc. of the 2018 NDSS, San Diego, CA, Feb. 2018.

[24] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A methodology
for empirical analysis of permission-based security models and its application to
android,” in Proc. of the 17th ACM CCS, Chicago, Illinois, Oct. 2010.

137

https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/
https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
https://motherboard.vice.com/en_us/article/aekj9j/internet-of-things-ransomware-smart-thermostat
http://colinoflynn.com/wp-content/uploads/2016/08/us-16-OFlynn-A-Lightbulb-Worm-wp.pdf
http://colinoflynn.com/wp-content/uploads/2016/08/us-16-OFlynn-A-Lightbulb-Worm-wp.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Jin-Smart-Nest-Thermostat-A-Smart-Spy-In-Your-Home-WP.pdf
https://www.netsparker.com/blog/web-security/hacking-smart-tv-command-injection/
https://www.netsparker.com/blog/web-security/hacking-smart-tv-command-injection/

[25] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the android
permission specification,” in Proc. of the 19th ACM CCS, Raleigh, NC, Oct. 2012.

[26] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryp-
tographic misuse in android applications,” in Proc. of the 20th ACM CCS, Berlin,
Germany, Oct. 2013.

[27] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google play,” in Proc.
of the 2014 ACM SIGMETRICS, 2014.

[28] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-phones attacking smart-
homes,” in Proc. of the 9th ACM WiSec, 2016.

[29] S. Demetriou et al., “Hanguard: Sdn-driven protection of smart home wifi devices
from malicious mobile apps,” in Proc. of the 10th ACM WiSec, 2017.

[30] J. Chen et al., “Iotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing,” in Proc. of the 2018 NDSS, San Diego, CA, Feb. 2018.

[31] C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-based smart
homes,” in Proc. ACM PLAS, 2016.

[32] A. Blaich and A. Hay, Hello Barbie Initial Security Analysis, https://static1.squ
arespace.com/static/543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/
1453747529070/HelloBarbieSecurityAnalysis.pdf, 2016.

[33] J. Wilson, R. S. Wahby, H. Corrigan-Gibbs, D. Boneh, P. Levis, and K. Winstein,
“Trust but verify: Auditing the secure internet of things,” in Proc. of the 15th Mo-
biSys, 2017.

[34] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some recipes can
do more than spoil your appetite: Analyzing the security and privacy risks of ifttt
recipes,” in Proc. of the 26th International World Wide Web Conference (WWW),
Perth, Australia, 2017.

[35] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized action integrity
for trigger-action iot platforms,” in Proc. of the 2018 NDSS, San Diego, CA, Feb.
2018.

[36] US-CERT/NIST, CVE-2011-3389, https : / /web.nvd.nist .gov/view/vuln/detail?
vulnId=CVE-2011-3389, 2011.

[37] D. Garcia, Upnp mapping, 2011.

138

https://static1.squarespace.com/static/543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/1453747529070/HelloBarbieSecurityAnalysis.pdf
https://static1.squarespace.com/static/543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/1453747529070/HelloBarbieSecurityAnalysis.pdf
https://static1.squarespace.com/static/543effd8e4b095fba39dfe59/t/56a66d424bf1187ad34383b2/1453747529070/HelloBarbieSecurityAnalysis.pdf
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3389
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3389

[38] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the tls and dtls record
protocols,” in Proc. of the 34th S&P Oakland, San Francisco, CA, May 2013.

[39] M. Ryan, Bluetooth Smart:The Good, The Bad, The Ugly... and The Fix, https :
//lacklustre.net/bluetooth/bluetooth smart good bad ugly fix-mikeryan-blackhat
2013.pdf, 2013.

[40] B. Fouladi, Honey, I’m Home!! Hacking Z-Wave Home Automation Systems, https:
//cybergibbons.com/wp-content/uploads/2014/11/honeyimhome-131001042426-
phpapp01.pdf, 2013.

[41] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt,
“On the security of rc4 in tls and wpa,” in Proc. of the 22th USENIX Security,
Washington, DC, Aug. 2013.

[42] J. Selvi, Bypassing HTTP Strict Transport Security, https://www.blackhat.com/
docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-
wp.pdf, 2014.

[43] B. Möller, T. Duong, and K. Kotowicz, “This POODLE Bites: Exploiting The SSL
3.0 Fallback,” Google, Tech. Rep., 2014.

[44] US-CERT/NIST, CVE-2015-0204, https : / /web.nvd.nist .gov/view/vuln/detail?
vulnId=CVE-2015-0204, 2015.

[45] US-CERT/NIST, CVE-2012-4929, https : / /web.nvd.nist .gov/view/vuln/detail?
vulnId=CVE-2012-4929, 2015.

[46] B. Beurdouche et al., “A messy state of the union: Taming the composite state
machines of tls,” in Proc. of the 36th S&P Oakland, San Jose, CA, May 2015.

[47] D. Adrian et al., “Imperfect forward secrecy: How diffie-hellman fails in practice,”
in Proc. of the 22nd ACM CCS, Denver, Colorado, Oct. 2015.

[48] T. Zillner and S. Strobl, Zigbee Exploited: The good, the bad and the ugly, https:
//www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-
Good-The-Bad-And-The-Ugly.pdf, 2015.

[49] N. Aviram et al., “DROWN: Breaking TLS using SSLv2,” in Proc. of the 25th
USENIX Security, Austin, TX, Aug. 2016.

[50] S. Jasek, GATTacking Bluetooth Smart devices, http://gattack.io/whitepaper.pdf,
2016.

139

https://lacklustre.net/bluetooth/bluetooth_smart_good_bad_ugly_fix-mikeryan-blackhat_2013.pdf
https://lacklustre.net/bluetooth/bluetooth_smart_good_bad_ugly_fix-mikeryan-blackhat_2013.pdf
https://lacklustre.net/bluetooth/bluetooth_smart_good_bad_ugly_fix-mikeryan-blackhat_2013.pdf
https://cybergibbons.com/wp-content/uploads/2014/11/honeyimhome-131001042426-phpapp01.pdf
https://cybergibbons.com/wp-content/uploads/2014/11/honeyimhome-131001042426-phpapp01.pdf
https://cybergibbons.com/wp-content/uploads/2014/11/honeyimhome-131001042426-phpapp01.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0204
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-0204
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-4929
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-4929
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf
http://gattack.io/whitepaper.pdf

[51] P. Kintis, Y. Nadji, D. Dagon, M. Farrell, and M. Antonakakis, “Understanding the
privacy implications of ecs,” in Proc. of the DIMVA, Donostia-San Sebastián, ES,
Jul. 2016.

[52] N. Apthorpe, D. Reisman, and N. Feamster, “Closing the blinds: Four strategies for
protecting smart home privacy from network observers,” in ConPro, 2017.

[53] D. Wood, N. Apthorpe, and N. Feamster, “Cleartext data transmissions in consumer
iot medical devices,” in IoT S&P, 2017.

[54] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable key compro-
mise in software update systems,” in Proc. of the 24th ACM CCS, Dallas, TX, Oct.
2017.

[55] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “Sok: Lessons
learned from android security research for appified software platforms,” in Proc. of
the 37th S&P Oakland, San Jose, CA, May 2016.

[56] C. Zuo, W. Wang, Z. Lin, and R. Wang, “Automatic forgery of cryptographically
consistent messages to identify security vulnerabilities in mobile services.,” in Proc.
of the 2016 NDSS, San Diego, CA, Feb. 2016.

[57] About - IFTTT, https://ifttt.com/about, 2018.

[58] Work Super Smart - Automate.io, https://automate.io, 2018.

[59] Cloud Business App Integration, https://cloudwork.com, 2018.

[60] M. Riley, A. Sharpe, and J. Robertson, Equifax Suffered a Hack Almost Five Months
Earlier Than the Date It Disclosed, https://www.bloomberg.com/news/articles/
2017-09-18/equifax- is- said- to-suffer-a-hack-earlier- than- the-date-disclosed,
2017.

[61] G. De Vynck, Orbitz Hack May Have Compromised 880,000 Credit Cards, https:
//www.bloomberg.com/news/articles/2018-03-20/expedia-s-orbitz-hack-may-
have-compromised-880-000-credit-cards, 2018.

[62] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no castle: Privacy
vulnerabilities of encrypted iot traffic,” in DAT, 2016.

[63] J. Novet, Amazon scrambles to fix cloud networking issue affecting companies like
Atlassian, Twilio, https://www.cnbc.com/2018/03/02/amazon-cloud-networking-
outage-affecting-atlassian-twilio-slack.html, 2018.

140

https://ifttt.com/about
https://automate.io
https://cloudwork.com
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.bloomberg.com/news/articles/2018-03-20/expedia-s-orbitz-hack-may-have-compromised-880-000-credit-cards
https://www.bloomberg.com/news/articles/2018-03-20/expedia-s-orbitz-hack-may-have-compromised-880-000-credit-cards
https://www.bloomberg.com/news/articles/2018-03-20/expedia-s-orbitz-hack-may-have-compromised-880-000-credit-cards
https://www.cnbc.com/2018/03/02/amazon-cloud-networking-outage-affecting-atlassian-twilio-slack.html
https://www.cnbc.com/2018/03/02/amazon-cloud-networking-outage-affecting-atlassian-twilio-slack.html

[64] N. Garun, Yahoo says all 3 billion user accounts were impacted by 2013 security
breach, https://www.theverge.com/2017/10/3/16414306/yahoo-security-data-
breach-3-billion-verizon, 2017.

[65] S. Moss, Major ddos attack on dyn disrupts aws, twitter, spotify and more, https:
//www.theverge.com/2017/10/3/16414306/yahoo-security-data-breach-3-billion-
verizon, 2016.

[66] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and A. J. Halderman, “A search
engine backed by internet-wide scanning,” in Proc. of the 22nd ACM CCS, Denver,
Colorado, Oct. 2015.

[67] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” in Proc.
of the 17th S&P Oakland, Oakland, CA, May 1996.

[68] AWS IoT Core, https://aws.amazon.com/iot-core/, 2018.

[69] IoT Hub Connect, monitor, and manage billions of IoT assets, https://cloud.google.
com/solutions/iot/, 2018.

[70] GOOGLE CLOUD IOT: Intelligent IoT platform that unlocks business insights
from your global device network, https://cloud.google.com/solutions/iot/, 2018.

[71] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari, Client subnet in dns
queries, http://www.ietf.org/rfc/rfc7871.txt, 2016.

[72] A. Bellissimo, J. Burgess, and K. Fu, “Secure software updates: Disappointments
and new challenges.,” in HotSec, 2006.

[73] CERT/CC, Vulnerability note vu#361684, https://www.kb.cert.org/vuls/id/361684,
2015.

[74] GNUcitizen, Hacking the interwebs, http://www.gnucitizen.org/blog/hacking-the-
interwebs, 2008.

[75] HD Moore, “Security Flaws in Universal Plug and Play,” Tech. Rep., 2013.

[76] Bluetooth SIG, Bluetooth Low Energy - Bluetooth Technology Website, https : / /
www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/
low-energy, 2016.

[77] Alliance, Zigbee and others, Zigbee Specification, 2006.

[78] Z-Wave Alliance, About Z-Wave Technology, http://z-wavealliance.org/about z-
wave technology, 2016.

141

https://www.theverge.com/2017/10/3/16414306/yahoo-security-data-breach-3-billion-verizon
https://www.theverge.com/2017/10/3/16414306/yahoo-security-data-breach-3-billion-verizon
https://www.theverge.com/2017/10/3/16414306/yahoo-security-data-breach-3-billion-verizon
https://www.theverge.com/2017/10/3/16414306/yahoo-security-data-breach-3-billion-verizon
https://www.theverge.com/2017/10/3/16414306/yahoo-security-data-breach-3-billion-verizon
https://aws.amazon.com/iot-core/
https://cloud.google.com/solutions/iot/
https://cloud.google.com/solutions/iot/
https://cloud.google.com/solutions/iot/
http://www.ietf.org/rfc/rfc7871.txt
https://www.kb.cert.org/vuls/id/361684
http://www.gnucitizen.org/blog/hacking-the-interwebs
http://www.gnucitizen.org/blog/hacking-the-interwebs
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy
http://z-wavealliance.org/about_z-wave_technology
http://z-wavealliance.org/about_z-wave_technology

[79] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner, “Smart locks:
Lessons for securing commodity internet of things devices,” in Proc. of the 11th
ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS), Xi’an, China, Jun. 2016.

[80] Zigbee ”insecure rejoin” faq, https://support.smartthings.com/hc/en-us/articles/
208201243-ZigBee-Insecure-Rejoin-FAQ, 2018.

[81] Z-Wave Alliance, Z-Wave Transport-Encapsulation Command Class Specification,
http://zwavepublic.com/sites/default/files/command class specs 2017A/SDS13783-
5Z-WaveTransport-EncapsulationCommandClassSpecification.pdf, 2017.

[82] Zigbee Alliance, Zigbee: Securing the Wireless IoT, http://www.zigbee.org/zigbee-
for-developers/zigbee-3-0/, 2015.

[83] J. Clark and P. C. van Oorschot, “Sok: Ssl and https: Revisiting past challenges
and evaluating certificate trust model enhancements,” in Proc. of the 34th S&P
Oakland, San Francisco, CA, May 2013.

[84] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “Inside
the slammer worm,” IEEE Security & Privacy, 2003.

[85] H. Zuzana, Malicious campaign targets south korean users with backdoor-laced
torrents, https://web.archive.org/web/20190822042548/https://www.welivesecur
ity.com/2019/07/08/south-korean-users-backdoor-torrents/, Online; accessed 25
January 2020, 2019.

[86] C. Daniel, Interesting information about ssh scans, https://web.archive.org/web/
20160430170921/https://dcid.me/blog/2006/03/interesting- information-about-
ssh-scans/, Online; accessed 25 January 2020, 2006.

[87] G. McDonald, L. O. Murchu, S. Doherty, and E. Chien, Stuxnet 0.5: The missing
link, https://web.archive.org/web/20200208170135/https://www.symantec.com/
content/dam/symantec/docs/security-center/white-papers/stuxnet-missing-link-
13-en.pdf, Online; accessed 25 January 2020, 2013.

[88] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose, “All your iframes point to
us,” Aug. 2008.

[89] T. Holz, M. Steiner, F. Dahl, E. Biersack, F. C. Freiling, et al., “Measurements
and mitigation of peer-to-peer-based botnets: A case study on storm worm,” in
Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats (LEET), 2008.

142

https://support.smartthings.com/hc/en-us/articles/208201243-ZigBee-Insecure-Rejoin-FAQ
https://support.smartthings.com/hc/en-us/articles/208201243-ZigBee-Insecure-Rejoin-FAQ
http://zwavepublic.com/sites/default/files/command_class_specs_2017A/SDS13783-5 Z-Wave Transport-Encapsulation Command Class Specification.pdf
http://zwavepublic.com/sites/default/files/command_class_specs_2017A/SDS13783-5 Z-Wave Transport-Encapsulation Command Class Specification.pdf
http://www.zigbee.org/zigbee-for-developers/zigbee-3-0/
http://www.zigbee.org/zigbee-for-developers/zigbee-3-0/
https://web.archive.org/web/20190822042548/https://www.welivesecurity.com/2019/07/08/south-korean-users-backdoor-torrents/
https://web.archive.org/web/20190822042548/https://www.welivesecurity.com/2019/07/08/south-korean-users-backdoor-torrents/
https://web.archive.org/web/20160430170921/https://dcid.me/blog/2006/03/interesting-information-about-ssh-scans/
https://web.archive.org/web/20160430170921/https://dcid.me/blog/2006/03/interesting-information-about-ssh-scans/
https://web.archive.org/web/20160430170921/https://dcid.me/blog/2006/03/interesting-information-about-ssh-scans/
https://web.archive.org/web/20200208170135/https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/stuxnet-missing-link-13-en.pdf
https://web.archive.org/web/20200208170135/https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/stuxnet-missing-link-13-en.pdf
https://web.archive.org/web/20200208170135/https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/stuxnet-missing-link-13-en.pdf

[90] S. Shin, R. Lin, and G. Gu, “Cross-analysis of botnet victims: New insights and
implications,” in Proc. of the 14th RAID, Menlo Park, California, Sep. 2011.

[91] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş, “The dropper effect:
Insights into malware distribution with downloader graph analytics,” in Proc. of
the 22nd ACM CCS, Denver, Colorado, Oct. 2015.

[92] B. Stone-Gross et al., “Your botnet is my botnet: Analysis of a botnet takeover,” in
Proc. of the 16th ACM CCS, Chicago, Illinois, Nov. 2009.

[93] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: An attack-agnostic ap-
proach for preventing drive-by malware infections,” in Proc. of the 17th ACM CCS,
Chicago, Illinois, Oct. 2010.

[94] L. Invernizzi et al., “Nazca: Detecting malware distribution in large-scale net-
works,” in Proc. of the 2014 NDSS, San Diego, CA, Feb. 2014.

[95] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted approach
to understanding the botnet phenomenon,” in Proc. of the 6th ACM SIGCOMM
Conference on Internet Measurement (IMC), 2006.

[96] P. Kotzias, L. Bilge, P.-A. Vervier, and J. Caballero, “Mind your own business: A
longitudinal study of threats and vulnerabilities in enterprises,” in Proc. of the 2019
NDSS, San Diego, CA, Feb. 2019.

[97] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Polymorphic worm
detection using structural information of executables,” in Proc. of the 8th RAID,
Seattle, Washington, Sep. 2005.

[98] P. Barford and V. Yegneswaran, “An inside look at botnets,” Malware Detection,
2007.

[99] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “My botnet is bigger than yours
(maybe, better than yours): Why size estimates remain challenging,” in Proceed-
ings of the 1st Usenix Workshop on Hot Topics in Understanding Botnets, 2007.

[100] D. Dagon, G. Gu, C. P. Lee, and W. Lee, “A taxonomy of botnet structures,” in
Proc. of the 23nd ACSAC, 2007.

[101] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting fast-
flux service networks,” in Proc. of the 15th NDSS, San Diego, CA, Feb. 2008.

[102] M. POLYCHRONAKIS, “Ghost turns zombie: Exploring the life cycle of web-
based malware,” in Proceedings of the 1st Usenix Workshop on Large-Scale Ex-
ploits and Emergent Threats (LEET), 2008.

143

[103] C. Kanich et al., “Spamalytics: An empirical analysis of spam marketing conver-
sion,” in Proc. of the 15th ACM CCS, Alexandria, VA, Oct. 2008.

[104] C. Y. Cho, J. Caballero, C. Grier, V. Paxson, and D. Song, “Insights from the inside:
A view of botnet management from infiltration,” in Proceedings of the 3rd USENIX
conference on Large-scale exploits and emergent threats: botnets, spyware, worms,
and more, 2010.

[105] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting environment-sensitive
malware,” in Proc. of the 14th RAID, Menlo Park, California, Sep. 2011.

[106] C. Rossow, C. Dietrich, and H. Bos, “Large-scale analysis of malware download-
ers,” in Proc. of the DIMVA, Jul. 2012.

[107] C. Gañán, O. Cetin, and M. van Eeten, “An empirical analysis of zeus c&c life-
time,” in Proc. of the 10th ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS), Singapore, Apr. 2015.

[108] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolu-
tion,” in Proc. of the 33rd S&P Oakland, San Francisco, CA, May 2012.

[109] C. Lever, M. Antonakakis, B. Reaves, P. Traynor, and W. Lee, “The core of the
matter: Analyzing malicious traffic in cellular carriers,” in Proc. of the 20th NDSS,
San Diego, CA, Feb. 2013.

[110] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van Der
Veen, and C. Platzer, “Andrubis–1,000,000 apps later: A view on current An-
droid malware behaviors,” in Proceedings of the 3rd workshop on building analysis
datasets and gathering experience returns for security (BADGERS), 2014.

[111] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The evolution
of android malware and android analysis techniques,” ACM Computing Surveys
(CSUR), 2017.

[112] K. Stevens and D. Jackson, Zeus banking trojan report, https://web.archive.org/
web / 20191222124154 / https : / / www . secureworks . com / research / zeus, Online;
accessed 25 January 2020, 2010.

[113] M. Cruz, Security 101: The rise of fileless threats that abuse powershell, https :
//web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/sec
urity-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell,
Online; accessed 25 January 2020, 2017.

144

https://web.archive.org/web/20191222124154/https://www.secureworks.com/research/zeus
https://web.archive.org/web/20191222124154/https://www.secureworks.com/research/zeus
https://web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/security-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell
https://web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/security-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell
https://web.archive.org/save/https://www.trendmicro.com/vinfo/mx/security/news/security-technology/security-101-the-rise-of-fileless-threats-that-abuse-powershell

[114] M. T. Paracha, D. J. Dubois, N. Vallina-Rodriguez, and D. Choffnes, “Iotls: Under-
standing tls usage in consumer iot devices,” in Proc. of the 21st ACM SIGCOMM
Conference on Internet Measurement (IMC), Virtual, Nov. 2021.

[115] H. Zhang, A. Anilkumar, M. Fredrikson, and Y. Agarwal, “Capture: Centralized
library management for heterogeneous iot devices,” in Proc. of the 30th USENIX
Security, Aug. 2021.

[116] T. Sasaki, A. Fujita, C. H. Ganán, M. van Eeten, K. Yoshioka, and T. Matsumoto,
“Exposed infrastructures: Discovery, attacks and remediation of insecure ics remote
management devices,” in Proc. of the 43nd S&P Oakland, May 2022.

[117] IADMIN, Hydra IRC bot, the 25 minute overview of the kit, https://web.archive.
org/web/20190617034526/http://insecurety.net/hydra- irc-bot- the-25-minute-
overview-of-the-kit/, Online; accessed 25 January 2020, 2018.

[118] nenolod, Network Bluepill - stealth router-based botnet has been DDoSing dronebl
for the last couple of weeks, https://web.archive.org/web/20191223213657/https:
//www.dronebl.org/blog/8, Online; accessed 25 January 2020, 2009.

[119] P. Čeleda, R. Krejčı́, J. Vykopal, and M. Drašar, “Embedded malware - an anal-
ysis of the chuck norris botnet,” in European Conference on Computer Network
Defense, 2010.

[120] Carna Bot, Internet Census 2012, https://web.archive.org/web/20191226230924/
http://census2012.sourceforge.net/paper.html, Online; accessed 25 January 2020,
2012.

[121] unixfreaxjp, Another story of Unix Trojan: Tsunami/Kaiten.c (IRC/Bot) w/ Flooder,
Backdoor at a hacked xBSD, https://web.archive.org/web/20191022131906/https:
//blog.malwaremustdie.org/2013/05/story-of-unix-trojan-tsunami-ircbot-w.html,
Online; accessed 25 January 2020, 2013.

[122] Symantec, Linux.Lightaidra, https://www.symantec.com/security-center/writeup/
2014-120115-3009-99, Online; accessed 25 January 2020, 2014.

[123] I. Zeifman, R. Atias, and O. Gayer, Lax Security Opens the Door for Mass-Scale
Abuse of SOHO Routers, https: / /web.archive.org/web/20191028220814/https:
//www.imperva.com/blog/ddos-botnet-soho-router/, Online; accessed 25 January
2020, 2015.

[124] Trend Micro, Bash Vulnerability (Shellshock) Exploit Emerges in the Wild, Leads to
BASHLITE Malware, https://web.archive.org/web/20181129100545/https://blog.
trendmicro.com/trendlabs- security- intelligence/bash- vulnerability- shellshock-

145

https://web.archive.org/web/20190617034526/http://insecurety.net/hydra-irc-bot-the-25-minute-overview-of-the-kit/
https://web.archive.org/web/20190617034526/http://insecurety.net/hydra-irc-bot-the-25-minute-overview-of-the-kit/
https://web.archive.org/web/20190617034526/http://insecurety.net/hydra-irc-bot-the-25-minute-overview-of-the-kit/
https://web.archive.org/web/20191223213657/https://www.dronebl.org/blog/8
https://web.archive.org/web/20191223213657/https://www.dronebl.org/blog/8
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191022131906/https://blog.malwaremustdie.org/2013/05/story-of-unix-trojan-tsunami-ircbot-w.html
https://web.archive.org/web/20191022131906/https://blog.malwaremustdie.org/2013/05/story-of-unix-trojan-tsunami-ircbot-w.html
https://www.symantec.com/security-center/writeup/2014-120115-3009-99
https://www.symantec.com/security-center/writeup/2014-120115-3009-99
https://web.archive.org/web/20191028220814/https://www.imperva.com/blog/ddos-botnet-soho-router/
https://web.archive.org/web/20191028220814/https://www.imperva.com/blog/ddos-botnet-soho-router/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/

exploit-emerges-in-the-wild-leads-to-flooder/, Online; accessed 25 January 2020,
2014.

[125] unixfreaxjp, MMD-0021-2014 - Linux/Elknot: China’s ELF DDoS+backdoor, http
s://web.archive.org/web/20190620160643/http://blog.malwaremustdie.org/2014/
05/linux-reversing-is-fun-toying-with-elf.html, Online; accessed 25 January 2020,
2014.

[126] unixfreaxjp, MMD-0028-2014 - Linux/XOR.DDoS : Fuzzy reversing a new China
ELF, https://web.archive.org/web/20200111215513/https://blog.malwaremustdie.
org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html, Online; accessed
25 January 2020, 2014.

[127] The White Team, linux.wifatch, https://gitlab.com/rav7teif/linux.wifatch, Online;
accessed 25 January 2020, 2014.

[128] Johannes, Linksys Worm (”TheMoon”) Captured, https:/ /web.archive.org/web/
20190506033506/https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+
Captured/17630, Online; accessed 25 January 2020, 2014.

[129] unixfreaxjp, MMD-0057-2016 - Linux/LuaBot - IoT botnet as service, https://web.
archive.org/web/20191001035222/https : / /blog.malwaremustdie .org/2016/09/
mmd-0057-2016-new-elf-botnet- linuxluabot.html, Online; accessed 25 January
2020, 2016.

[130] M. Malik and M.-E. M. Léveillé, Meet Remaiten – a Linux bot on steroids tar-
geting routers and potentially other IoT devices, https : / /web .archive .org /web/
20190921144358/https://www.welivesecurity.com/2016/03/30/meet- remaiten-
a- linux- bot- on- steroids- targeting- routers- and- potentially- other- iot - devices/,
Online; accessed 25 January 2020, 2016.

[131] unixfreaxjp, MMD-0059-2016 - Linux/IRCTelnet (new Aidra) - A DDoS botnet
aims IoT w/ IPv6 ready, https : / /web .archive .org /web/20191001035221/https :
/ / blog . malwaremustdie . org / 2016 / 10 / mmd - 0059 - 2016 - linuxirctelnet - new -
ddos.html, Online; accessed 25 January 2020, 2016.

[132] O. Bilodeau and T. Dupuy, “Dissectinglinux/moose,” eset, Tech. Rep., 2017.

[133] L. ARSENE, Hold My Beer Mirai – Spinoff Named ‘LiquorBot’ Incorporates Cryp-
tomining, https://web.archive.org/web/20200108154200/https://labs.bitdefender.
com / 2020 / 01 / hold - my - beer - mirai - spinoff - named - liquorbot - incorporates -
cryptomining/, Online; accessed 25 January 2020, 2020.

146

https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20181129100545/https://blog.trendmicro.com/trendlabs-security-intelligence/bash-vulnerability-shellshock-exploit-emerges-in-the-wild-leads-to-flooder/
https://web.archive.org/web/20190620160643/http://blog.malwaremustdie.org/2014/05/linux-reversing-is-fun-toying-with-elf.html
https://web.archive.org/web/20190620160643/http://blog.malwaremustdie.org/2014/05/linux-reversing-is-fun-toying-with-elf.html
https://web.archive.org/web/20190620160643/http://blog.malwaremustdie.org/2014/05/linux-reversing-is-fun-toying-with-elf.html
https://web.archive.org/web/20200111215513/https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
https://web.archive.org/web/20200111215513/https://blog.malwaremustdie.org/2014/09/mmd-0028-2014-fuzzy-reversing-new-china.html
https://gitlab.com/rav7teif/linux.wifatch
https://web.archive.org/web/20190506033506/https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://web.archive.org/web/20190506033506/https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://web.archive.org/web/20190506033506/https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630
https://web.archive.org/web/20191001035222/https://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://web.archive.org/web/20191001035222/https://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://web.archive.org/web/20191001035222/https://blog.malwaremustdie.org/2016/09/mmd-0057-2016-new-elf-botnet-linuxluabot.html
https://web.archive.org/web/20190921144358/https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-on-steroids-targeting-routers-and-potentially-other-iot-devices/
https://web.archive.org/web/20190921144358/https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-on-steroids-targeting-routers-and-potentially-other-iot-devices/
https://web.archive.org/web/20190921144358/https://www.welivesecurity.com/2016/03/30/meet-remaiten-a-linux-bot-on-steroids-targeting-routers-and-potentially-other-iot-devices/
https://web.archive.org/web/20191001035221/https://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-new-ddos.html
https://web.archive.org/web/20191001035221/https://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-new-ddos.html
https://web.archive.org/web/20191001035221/https://blog.malwaremustdie.org/2016/10/mmd-0059-2016-linuxirctelnet-new-ddos.html
https://web.archive.org/web/20200108154200/https://labs.bitdefender.com/2020/01/hold-my-beer-mirai-spinoff-named-liquorbot-incorporates-cryptomining/
https://web.archive.org/web/20200108154200/https://labs.bitdefender.com/2020/01/hold-my-beer-mirai-spinoff-named-liquorbot-incorporates-cryptomining/
https://web.archive.org/web/20200108154200/https://labs.bitdefender.com/2020/01/hold-my-beer-mirai-spinoff-named-liquorbot-incorporates-cryptomining/

[134] radware, “BrickerBot” Results In PDoS Attack, https : / / web . archive . org / web /
20191226230924/http://census2012.sourceforge.net/paper.html, Online; accessed
25 January 2020, 2017.

[135] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Measurement and
analysis of hajime, a peer-to-peer iot botnet.,” in Proc. of the 2019 NDSS, San
Diego, CA, Feb. 2019.

[136] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security evaluation
of home-based iot deployments,” in Proc. of the 40th S&P Oakland, May 2019.

[137] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis, “Iotfinder: Efficient
large-scale identification of iot devices via passive dns traffic analysis,” in Proc. of
the 5th EuroS&P, Sep. 2020.

[138] S. Hilton, Dyn Analysis Summary Of Friday October 21 Attack, https://web.archive.
org/web/20191211172341/https://dyn.com/blog/dyn-analysis-summary-of-friday-
october-21-attack/, Online; accessed 25 January 2020.

[139] B. Krebs, New Mirai Worm Knocks 900K Germans Offline, https://krebsonsecurity.
com/2016/11/new-mirai-worm-knocks-900k-germans-offline/, Online; accessed
25 January 2020, 2016.

[140] L. Constantin, Armies of hacked IoT devices launch unprecedented DDoS attacks,
https : / / www . csoonline . com / article / 3124344 / armies - of - hacked - iot - devices -
launch-unprecedented-ddos-attacks.html, Online; accessed 25 January 2020, 2016.

[141] Check Point Research, Huawei Home Routers in Botnet Recruitment, https://web.
archive.org/web/20200106091208/https://research.checkpoint.com/2017/good-
zero-day-skiddie/, Online; accessed 25 January 2020, 2017.

[142] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding linux
malware,” in Proc. of the 39th S&P Oakland, San Francisco, CA, May 2018.

[143] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“Iotpot: Analysing the rise of iot compromises,” in 9th {USENIX} Workshop on
Offensive Technologies ({WOOT} 15), 2015.

[144] P.-A. Vervier and Y. Shen, “Before toasters rise up: A view into the emerging iot
threat landscape,” in Proc. of the 21th RAID, Crete, Greece, Sep. 2018.

[145] J. Choi, A. Anwar, H. Alasmary, J. Spaulding, D. Nyang, and A. Mohaisen, “Iot
malware ecosystem in the wild: A glimpse into analysis and exposures,” in Pro-
ceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019.

147

https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191226230924/http://census2012.sourceforge.net/paper.html
https://web.archive.org/web/20191211172341/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://web.archive.org/web/20191211172341/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://web.archive.org/web/20191211172341/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://www.csoonline.com/article/3124344/armies-of-hacked-iot-devices-launch-unprecedented-ddos-attacks.html
https://www.csoonline.com/article/3124344/armies-of-hacked-iot-devices-launch-unprecedented-ddos-attacks.html
https://web.archive.org/web/20200106091208/https://research.checkpoint.com/2017/good-zero-day-skiddie/
https://web.archive.org/web/20200106091208/https://research.checkpoint.com/2017/good-zero-day-skiddie/
https://web.archive.org/web/20200106091208/https://research.checkpoint.com/2017/good-zero-day-skiddie/

[146] F. Dang et al., “Understanding fileless attacks on linux-based iot devices with hon-
eycloud,” in Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, 2019.

[147] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, “Fast malware classification
by automated behavioral graph matching,” in Proceedings of the 6th Annual Work-
shop on Cyber Security and Information Intelligence Research, 2010.

[148] H. Alasmary et al., “Analyzing and detecting emerging internet of things malware:
A graph-based approach,” IEEE Internet of Things Journal, 2019.

[149] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Ddos-capable iot mal-
wares: Comparative analysis and mirai investigation,” Security and Communication
Networks, 2018.

[150] J. Choi et al., “Honor among thieves: Towards understanding the dynamics and
interdependencies in iot botnets,” in 2019 IEEE Conference on Dependable and
Secure Computing (DSC), 2019.

[151] P. Richter and A. Berger, “Scanning the scanners: Sensing the internet from a mas-
sively distributed network telescope,” in Proc. of the 19th ACM SIGCOMM Con-
ference on Internet Measurement (IMC), Amsterdam, Netherlands, Nov. 2019.

[152] S. Torabi, E. Bou-Harb, C. Assi, M. Galluscio, A. Boukhtouta, and M. Debbabi,
“Inferring, characterizing, and investigating internet-scale malicious iot device ac-
tivities: A network telescope perspective,” in Proc. of the International Conference
on Dependable Systems and Networks (DSN), 2018.

[153] O. Çetin et al., “Cleaning up the internet of evil things: Real-world evidence on
isp and consumer efforts to remove mirai.,” in Proc. of the 2019 NDSS, San Diego,
CA, Feb. 2019.

[154] tenable, Nessus Professional, http://info.tenable.com/rs/934-XQB-568/images/
NessusPro DS EN v8.pdf, 2005.

[155] MITRE, About CVE, http://cve.mitre.org/about/index.html, 1999.

[156] FIRST, Common Vulnerability Scoring System SIG, https://www.first.org/cvss/,
2005.

[157] A. Abraham, Mobile Security Framework (MobSF), https://github.com/MobSF/
Mobile-Security-Framework-MobSF/blob/master/README.md, 2016.

[158] Linkedin, QARK - Quick Android Review Kit, https://github.com/linkedin/qark/
blob/master/README.md, 2016.

148

http://info.tenable.com/rs/934-XQB-568/images/NessusPro__DS__EN_v8.pdf
http://info.tenable.com/rs/934-XQB-568/images/NessusPro__DS__EN_v8.pdf
http://cve.mitre.org/about/index.html
https://www.first.org/cvss/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/blob/master/README.md
https://github.com/MobSF/Mobile-Security-Framework-MobSF/blob/master/README.md
https://github.com/linkedin/qark/blob/master/README.md
https://github.com/linkedin/qark/blob/master/README.md

[159] Kryptowire EMM+S, http://www.kryptowire.com/enterprise.php, 2011.

[160] ntop, High-Speed Web-based Traffic Analysis and Flow Collection, https://www.
ntop.org/products/traffic-analysis/ntop/, 1998.

[161] G. Combs, About Wireshark, https://www.wireshark.org, 1998.

[162] D. Roethlisberger, SSLsplit - transparent SSL/TLS interception, https://www.roe.
ch/SSLsplit, 2009.

[163] RASPBERRY PI ZERO, https://www.raspberrypi.org/products/raspberry-pi-zero/,
2018.

[164] THE JUNE OVEN, https://juneoven.com/the-oven, 2018.

[165] About Let’s Encrypt, https://letsencrypt.org/about/, 2018.

[166] Unlocking the potential of the internet of things, http : / / www . mckinsey . com /
business - functions /digital - mckinsey /our - insights / the - internet - of - things - the -
value-of-digitizing-the-physical-world, 2015.

[167] A. Mirian et al., “An internet-wide view of ics devices,” in 2016 14th Annual Con-
ference on Privacy, Security and Trust (PST), IEEE, 2016.

[168] D. Uhrıcek, Lisa–multiplatform linux sandbox for analyzing iot malware, https :
//excel.fit.vutbr.cz/submissions/2019/058/58.pdf, 2020.

[169] Detux: The multiplatform linux sandbox, https://github.com/detuxsandbox/detux,
2016.

[170] S. Yonamine, Y. Taenaka, and Y. Kadobayashi, “Tamer: A sandbox for facilitating
and automating iot malware analysis with techniques to elicit malicious behavior.,”
in ICISSP, 2022.

[171] H.-V. Le and Q.-D. Ngo, “V-sandbox for dynamic analysis iot botnet,” IEEE Ac-
cess, vol. 8, 2020.

[172] A. Costin and J. Zaddach, “Iot malware: Comprehensive survey, analysis frame-
work and case studies,” BlackHat USA, 2018.

[173] O. Alrawi, BadThings - Linux-based IoT Malware.

[174] M. Clive, “2017 Embedded Markets Study: Integrating IoT and Advanced Technol-
ogy Designs, Application Development & Processing Environments,” EETimes/Em-
bedded.com, Tech. Rep., 2017.

149

http://www.kryptowire.com/enterprise.php
https://www.ntop.org/products/traffic-analysis/ntop/
https://www.ntop.org/products/traffic-analysis/ntop/
https://www.wireshark.org
https://www.roe.ch/SSLsplit
https://www.roe.ch/SSLsplit
https://www.raspberrypi.org/products/raspberry-pi-zero/
https://juneoven.com/the-oven
https://letsencrypt.org/about/
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://excel.fit.vutbr.cz/submissions/2019/058/58.pdf
https://excel.fit.vutbr.cz/submissions/2019/058/58.pdf
https://github.com/detuxsandbox/detux

[175] EE—Times Embedded, “2019 Embedded Markets Study Integrating IoT and Ad-
vanced Technology Designs, Application Development & Processing Environments,”
EETimes/Embedded.com, Tech. Rep., 2019.

[176] O. Alrawi, C. Zuo, R. Duan, R. Pai Kasturi, Z. Lin, and B. Saltaformaggio, “The
betrayal at cloud city: An empirical analysis of cloud-based mobile backends,” in
Proc. of the 28th USENIX Security, Aug. 2019.

[177] S. Zhu et al., “Measuring and modeling the label dynamics of online anti-malware
engines,” in Proc. of the 29th USENIX Security, Aug. 2020.

[178] A. Kountouras et al., “Enabling network security through active DNS datasets,” in
Proc. of the 19th RAID, Evry, France, Sep. 2016.

[179] B. P. LLC, Bad Packets - We provide cyber threat intelligence on emerging threats,
IoT botnets, and network abuse, https://badpackets.net/, Online; accessed 25 Jan-
uary 2020.

[180] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski, and W. Joosen,
“Tranco: A research-oriented top sites ranking hardened against manipulation,” in
Proc. of the 2019 NDSS, San Diego, CA, Feb. 2019.

[181] U. Bayer, C. Kruegel, and E. Kirda, “TTAnalyze: A Tool for Analyzing Malware,”
in 15th Annual Conference of the European Institute for Computer Antivirus Re-
search (EICAR)., 2006.

[182] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and classifica-
tion of malware behavior,” in Proc. of the DIMVA, Jul. 2008.

[183] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A lustrum
of malware network communication: Evolution and insights,” in Proc. of the 38th
S&P Oakland, San Jose, CA, May 2017.

[184] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool for massive
malware labeling,” in Proc. of the 19th RAID, Evry, France, Sep. 2016.

[185] National Institute of Standards and Technology, NATIONAL VULNERABILITY DATABASE,
https://nvd.nist.gov, 2019.

[186] Zeropoint Dynamics, Zelos: A comprehensive binary emulation and instrumenta-
tion platform, https://github.com/zeropointdynamics/zelos, Online; accessed 30
September 2020.

[187] threatland, TL-BOTS/TL.MIRAI, https : / /github.com/threatland/TL- BOTS/ tree /
master/TL.MIRAI, Online; accessed 25 January 2020.

150

https://badpackets.net/
https://nvd.nist.gov
https://github.com/zeropointdynamics/zelos
https://github.com/threatland/TL-BOTS/tree/master/TL.MIRAI
https://github.com/threatland/TL-BOTS/tree/master/TL.MIRAI

[188] A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity, behavior-based
automated malware analysis and classification,” Elsevier Computers & Security,
2015.

[189] M. F. Oberhumer, L. Molnár, and J. F. Reiser, UPX: the Ultimate Packer for eXe-
cutables, https://www.unicorn-engine.org/, Online; accessed 25 January 2020.

[190] Buildroot, Buildroot: Making Embedded Linux Easy, https://buildroot.org/, Online;
accessed 25 January 2020.

[191] QEMU, QEMU: the FAST! processor emulator, https://www.qemu.org/, Online;
accessed 25 January 2020.

[192] A. Mohaisen, O. Alrawi, M. Larson, and D. McPherson, “Towards a methodical
evaluation of antivirus scans and labels,” in International Workshop on Information
Security Applications, 2013.

[193] A. Mohaisen and O. Alrawi, “Av-meter: An evaluation of antivirus scans and la-
bels,” in Proc. of the DIMVA, London, UK, Jun. 2014.

[194] W. Largent, New vpnfilter malware targets at least 500k networking devices world-
wide, http://blog.talosintelligence.com/2018/05/VPNFilter.html, May 2018.

[195] New mirai variant targets enterprise wireless presentation & display systems, https:
/ /unit42.paloaltonetworks.com/new- mirai- variant- targets- enterprise- wireless-
presentation-display-systems/, Mar. 2019.

[196] Muhstik botnet exploits the latest weblogic vulnerability for cryptomining and ddos
attacks, https://unit42.paloaltonetworks.com/muhstik-botnet-exploits-the-latest-
weblogic-vulnerability-for-cryptomining-and-ddos-attacks/, Apr. 2019.

[197] New mirai variant adds 8 new exploits, targets additional iot devices, https://unit42.
paloaltonetworks.com/new-mirai-variant-adds-8-new-exploits-targets-additional-
iot-devices/, Jun. 2019.

[198] Hide ’n seek botnet updates arsenal with exploits against nexus repository manager
& thinkphp, https://unit42.paloaltonetworks.com/hide- n- seek- botnet- updates-
arsenal-with-exploits-against-nexus-repository-manager-thinkphp/, Jun. 2019.

[199] Mirai variant echobot resurfaces with 13 previously unexploited vulnerabilities,
https://unit42.paloaltonetworks.com/mirai-variant-echobot-resurfaces-with-13-
previously-unexploited-vulnerabilities/, Dec. 2019.

[200] L. Cashdollar, Latest echobot: 26 infection vectors, https://blogs.akamai.com/sitr/
2019/06/latest-echobot-26-infection-vectors.html, Jun. 2019.

151

https://www.unicorn-engine.org/
https://buildroot.org/
https://www.qemu.org/
http://blog.talosintelligence.com/2018/05/VPNFilter.html
https://unit42.paloaltonetworks.com/new-mirai-variant-targets-enterprise-wireless-presentation-display-systems/
https://unit42.paloaltonetworks.com/new-mirai-variant-targets-enterprise-wireless-presentation-display-systems/
https://unit42.paloaltonetworks.com/new-mirai-variant-targets-enterprise-wireless-presentation-display-systems/
https://unit42.paloaltonetworks.com/muhstik-botnet-exploits-the-latest-weblogic-vulnerability-for-cryptomining-and-ddos-attacks/
https://unit42.paloaltonetworks.com/muhstik-botnet-exploits-the-latest-weblogic-vulnerability-for-cryptomining-and-ddos-attacks/
https://unit42.paloaltonetworks.com/new-mirai-variant-adds-8-new-exploits-targets-additional-iot-devices/
https://unit42.paloaltonetworks.com/new-mirai-variant-adds-8-new-exploits-targets-additional-iot-devices/
https://unit42.paloaltonetworks.com/new-mirai-variant-adds-8-new-exploits-targets-additional-iot-devices/
https://unit42.paloaltonetworks.com/hide-n-seek-botnet-updates-arsenal-with-exploits-against-nexus-repository-manager-thinkphp/
https://unit42.paloaltonetworks.com/hide-n-seek-botnet-updates-arsenal-with-exploits-against-nexus-repository-manager-thinkphp/
https://unit42.paloaltonetworks.com/mirai-variant-echobot-resurfaces-with-13-previously-unexploited-vulnerabilities/
https://unit42.paloaltonetworks.com/mirai-variant-echobot-resurfaces-with-13-previously-unexploited-vulnerabilities/
https://blogs.akamai.com/sitr/2019/06/latest-echobot-26-infection-vectors.html
https://blogs.akamai.com/sitr/2019/06/latest-echobot-26-infection-vectors.html

[201] J. v. D. Wiel, V. Diaz, Y. Namestnikov, and K. Zykov, Hajime, the mysterious
evolving botnet, https://securelist.com/hajime- the-mysterious-evolving-botnet/
78160/, Apr. 2017.

[202] A. Team, Realtek sdk exploits on the rise from egypt, https://www.netscout.com/
blog/asert/realtek-sdk-exploits-rise-egypt, May 2019.

[203] lennarthaagsma, Recent vulnerability in eir d1000 router used to spread updated
version of mirai ddos bot, https://blog.fox-it.com/2016/11/28/recent-vulnerability-
in-eir-d1000-router-used- to-spread-updated-version-of-mirai-ddos-bot/, Nov.
2016.

[204] Huawei router exploit involved in satori and brickerbot given away for free on
christmas, https://blog.newskysecurity.com/huawei-router-exploit- involved-in-
satori-and-brickerbot-given-away-for-free-on-christmas-by-ac52fe5e4516, Apr.
2018.

[205] Cve-2018–10561 dasan gpon exploit weaponized in omni and muhstik botnets, htt
ps://blog.newskysecurity.com/cve-2018-10561-dasan-gpon-exploit-weaponized-
in-omni-and-muhstik-botnets-ad7b1f89cff3, May 2018.

[206] R. J. Yang and Kenny, A wicked family of bots, https://www.fortinet.com/blog/
threat-research/a-wicked-family-of-bots.html, May 2018.

[207] https://blog.netlab.360.com/iot reaper-a-rappid-spreading-new-iot-botnet-en/,
Oct. 2017.

[208] Early warning: A new mirai variant is spreading quickly on port 23 and 2323,
https://blog.netlab.360.com/early-warning-a-new-mirai-variant- is- spreading-
quickly-on-port-23-and-2323-en/, Jun. 2018.

[209] Multi-exploit iot/linux botnets mirai and gafgyt target apache struts, https://unit42.
paloaltonetworks.com/unit42-multi-exploit-iotlinux-botnets-mirai-gafgyt-target-
apache-struts-sonicwall/, Sep. 2018.

[210] Xbash combines botnet, ransomware, coinmining in worm that targets linux and
windows, https://unit42.paloaltonetworks.com/unit42- xbash- combines- botnet-
ransomware-coinmining-worm-targets-linux-windows/, Sep. 2018.

[211] M. S. Lenders, C. Amsüss, C. Gündoğan, T. C. Schmidt, and M. Wählisch, “DNS
over CoAP (DoC),” RFC Editor, RFC Draft, Jul. 2022.

[212] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-R. Sadeghi,
“Homesnitch: Behavior transparency and control for smart home iot devices,” in

152

https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/
https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/
https://www.netscout.com/blog/asert/realtek-sdk-exploits-rise-egypt
https://www.netscout.com/blog/asert/realtek-sdk-exploits-rise-egypt
https://blog.fox-it.com/2016/11/28/recent-vulnerability-in-eir-d1000-router-used-to-spread-updated-version-of-mirai-ddos-bot/
https://blog.fox-it.com/2016/11/28/recent-vulnerability-in-eir-d1000-router-used-to-spread-updated-version-of-mirai-ddos-bot/
https://blog.newskysecurity.com/huawei-router-exploit-involved-in-satori-and-brickerbot-given-away-for-free-on-christmas-by-ac52fe5e4516
https://blog.newskysecurity.com/huawei-router-exploit-involved-in-satori-and-brickerbot-given-away-for-free-on-christmas-by-ac52fe5e4516
https://blog.newskysecurity.com/cve-2018-10561-dasan-gpon-exploit-weaponized-in-omni-and-muhstik-botnets-ad7b1f89cff3
https://blog.newskysecurity.com/cve-2018-10561-dasan-gpon-exploit-weaponized-in-omni-and-muhstik-botnets-ad7b1f89cff3
https://blog.newskysecurity.com/cve-2018-10561-dasan-gpon-exploit-weaponized-in-omni-and-muhstik-botnets-ad7b1f89cff3
https://www.fortinet.com/blog/threat-research/a-wicked-family-of-bots.html
https://www.fortinet.com/blog/threat-research/a-wicked-family-of-bots.html
https://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
https://blog.netlab.360.com/early-warning-a-new-mirai-variant-is-spreading-quickly-on-port-23-and-2323-en/
https://blog.netlab.360.com/early-warning-a-new-mirai-variant-is-spreading-quickly-on-port-23-and-2323-en/
https://unit42.paloaltonetworks.com/unit42-multi-exploit-iotlinux-botnets-mirai-gafgyt-target-apache-struts-sonicwall/
https://unit42.paloaltonetworks.com/unit42-multi-exploit-iotlinux-botnets-mirai-gafgyt-target-apache-struts-sonicwall/
https://unit42.paloaltonetworks.com/unit42-multi-exploit-iotlinux-botnets-mirai-gafgyt-target-apache-struts-sonicwall/
https://unit42.paloaltonetworks.com/unit42-xbash-combines-botnet-ransomware-coinmining-worm-targets-linux-windows/
https://unit42.paloaltonetworks.com/unit42-xbash-combines-botnet-ransomware-coinmining-worm-targets-linux-windows/

Proceedings of the 12th conference on security and privacy in wireless and mobile
networks, 2019, pp. 128–138.

[213] A. Halterman, “Storming the kasa? security analysis of tp-link kasa smart home
devices,” Creat. Compon, 2019.

[214] S. Goutam, W. Enck, and B. Reaves, “Hestia: Simple least privilege network poli-
cies for smart homes,” in Proceedings of the 12th Conference on Security and Pri-
vacy in Wireless and Mobile Networks, 2019, pp. 215–220.

[215] P. Emami-Naeini, Y. Agarwal, L. F. Cranor, and H. Hibshi, “Ask the experts: What
should be on an iot privacy and security label?” In 2020 IEEE Symposium on Secu-
rity and Privacy (SP), IEEE, 2020, pp. 447–464.

[216] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Packet-level sig-
natures for smart home devices,” in Proc. of the 2020 NDSS, San Diego, CA, Feb.
2020.

[217] V. Melnyk, P. Haleta, and N. Golphamid, “Machine learning based network traf-
fic classification approach for internet of things devices,” Theoretical and Applied
Cybersecurity, vol. 2, no. 1, 2020.

[218] A. N. d. P. T. Gurgo et al., “Automated standard based security assessment for iot,”
2020.

[219] F. Yin, L. Yang, Y. Wang, and J. Dai, “Iot etei: End-to-end iot device identification
method,” in 2021 IEEE Conference on Dependable and Secure Computing (DSC),
IEEE, 2021, pp. 1–8.

[220] Y. Xiao and M. Varvello, “Fiat: Frictionless authentication of iot traffic,” in Pro-
ceedings of the 17th International Conference on emerging Networking EXperi-
ments and Technologies, 2021, pp. 483–484.

[221] C. Duan, H. Gao, G. Song, J. Yang, and Z. Wang, “Byteiot: A practical iot device
identification system based on packet length distribution,” IEEE Transactions on
Network and Service Management, 2021.

[222] B. Delinchant and J. Ferrari, “Standards and technologies from building sector, iot,
and open-source trends,” in Towards Energy Smart Homes, Springer, 2021, pp. 49–
111.

[223] P. M. S. Sánchez, J. M. J. Valero, A. H. Celdrán, G. Bovet, M. G. Pérez, and
G. M. Pérez, “A survey on device behavior fingerprinting: Data sources, techniques,
application scenarios, and datasets,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 2, pp. 1048–1077, 2021.

153

[224] C. Duan, S. Zhang, J. Yang, Z. Wang, Y. Yang, and J. Li, “Pinball: Universal and
robust signature extraction for smart home devices,” in 2021 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), IEEE, 2021, pp. 1–
9.

[225] How wirecutter vets the security and privacy of smart home devices, Sep. 2020.

[226] A. Piore, We’re surrounded by billions of internet-connected devices. can we trust
them? Oct. 2019.

[227] Amazon sidewalk will share your internet with strangers. it’s not as scary as it
sounds. Jun. 2021.

[228] Anker’s eufy lied to us about the security of its security cameras, Dec. 2022.

154

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	Thesis and Contributions
	Dissertation Organization

	2 | Foundational Work
	IoT Security Evaluation
	Malware Analysis
	Related Work

	3 | Security Evaluation of Home-based IoT Deployments
	Security Evaluation Methodology
	Results
	Evaluation Cases
	An Integrated Security Evaluation
	Proposals

	4 | Longitudinal Analysis
	Background
	Methodology
	Results
	Iterative Security Evaluation

	5 | Large-Scale Analysis of the IoT Malware Lifecycle
	Challenges and Limitations
	Methodology
	Results
	Case Studies
	Discussion
	Using Threat Analysis to Inform Risk Assessment

	6 | Risk Assessment Framework for IoT Deployments
	An Informed Risk Assessment Model
	Risk Assessment Framework
	Risk Model
	Case Study

	7 | Conclusion
	Risk Assessment and Empirical Data
	Broader Impact of Empirical Studies
	Closing Remarks

	References

