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ABSTRACT

The complex optimizations supported by modern compilers allow
for compiler provenance recovery at many levels. For instance, it
is possible to identify the compiler family and optimization level
used when building a binary, as well as the individual compiler
passes applied to functions within the binary. Yet, many down-
stream applications of compiler provenance remain unexplored.
To bridge that gap, we train and evaluate a multi-label compiler
provenance model on data collected from over 27,000 programs
built using LLVM 14, and apply the model to a number of security-
related tasks. Our approach considers 68 distinct compiler passes
and achieves an average F-1 score of 84.4%. We first use the model to
examine the magnitude of compiler-induced vulnerabilities, identi-
fying 53 information leak bugs in 10 popular projects. We also show
that several compiler optimization passes introduce a substantial
amount of functional code reuse gadgets that negatively impact
security. Beyond vulnerability detection, we evaluate other security
applications, including using recovered provenance information
to verify the correctness of Rich header data in Windows binaries
(e.g., forensic analysis), as well as for binary decomposition tasks
(e.g., third party library detection).
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1 INTRODUCTION

Over the past decade, compilers have taken on a life of their own.
Originally viewed as only a simple machine code generator, com-
pilers are now also performing sanity checks, adding security fea-
tures (e.g., shadow call stacks), and applying a broad spectrum of
optimizations. As compiler developers add more and more opti-
mizations to each new release, programs enjoy free performance
gains without sacrificing correctness or compatibility. LLVM, for
example, includes new and improved optimizations through each
version [29] and regularly updates target-specific optimizations
to maximize performance for new hardware; similarly, the release
notes of GCC [16, 17] show that each new release brings tens of
improvements in optimizations such as vectorizer optimizations,
inter-procedural optimizations, link-time optimizations, and target-
specific optimizations. The advancements are happening so quickly
that different compiler families, compiler versions, and optimiza-
tion options can generate very different machine code from the
same source code. But, unbeknownst to most programmers, that
complexity might come at a cost to security.

In fact, recent work that explores the security impact of compiler
optimizations [7, 13, 23, 48, 62] has shown that certain compiler
optimizations can cause serious security issues. Specifically, D’Silva
et al. [13] introduced the correctness-security gap and outlined how
modern compilers perform optimizations that uphold the correct-
ness of the program per programming language standards can nev-
ertheless bring negative impacts to security, creating vulnerabilities
such as information leakage and constant time violations.

One way to alert developers about these risks is to flag potential
vulnerabilities that arise during the compilation process of their
software or in the libraries they import. Indeed, an evaluation by Xu
et al. [59] on bug reports and commit messages related to compiler-
induced vulnerabilities found that although some developers are
aware of security issues introduced by compiler optimizations,
there are no effective solutions to help them detect or prevent
such bugs. The lack of solutions may be because the recovery of
provenance information is difficult because binaries do not include
direct indicators of their compiler provenance.

Besides finding compiler-induced vulnerabilities, compiler con-
figuration information is also valuable for other security applica-
tions. For one, malware analysts could use the compiler configu-
ration information of malware to assist with authorship attribu-
tion [1, 8, 45], under the assumption that malware from the same
author is more likely to share the same compiler and compiler
options. Secondly, compiler configuration information could aid
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critical binary decomposition tasks when constructing software bill
of materials (SBOMs) [4]. The need for SBOM techniques [15, 63] is
becoming increasingly important in light of widely publicized soft-
ware supply chain attacks. Binary decomposition aims to dissect a
binary file into smaller units, such as functions in the same object
file or library. Because functions in the same object file typically
share the same compiler configuration, coupled with the fact that it
is common practice to build libraries separately from the main pro-
gram, binary decomposition tools could use compiler configuration
information of each function as a feature for grouping code.

Unfortunately, while compiler provenance recovery has been
an active research area [20, 21, 46] with several applications —
especially within the realm of binary code similarity [10, 31, 42, 52]
— it was not until recently that our previous study [14] showed the
possibility of recovering fine-grained compiler pass information at
the function level using statistical learning techniques. That work
shed light on a promising new direction for low-level compiler
configuration recovery, although it was not without limitations.
For one, the empirical evaluation was limited, and both the training
and testing sets came from the same collection of programs.

In this paper, we go further by demonstrating the effectiveness
of compiler provenance information in a wide variety of security
tasks, including program analysis, bug detection, and forensic anal-
ysis. We begin by re-evaluating our previous approach on a signifi-
cantly larger benchmark. Next, we extend the work by presenting
a principled, large-scale evaluation on how compiler-induced vul-
nerabilities impact real-world projects. Specifically, we examine
the magnitude of vulnerabilities introduced by the dead store elim-
ination (DSE) optimization and also explore the extent to which
code reuse gadgets are introduced by different optimization passes.
We show how developers and analysts could use the recovered
provenance information to focus on functions modified by risky
optimizations. Additionally, we study a series of downstream tasks
in program analysis that leverage compiler information recovery
to improve security applications. To our knowledge, our study is
the first to explore the security impact of compiler optimizations at
the pass level and downstream tasks of function-level provenance
information. Our specific contributions include:

e We demonstrate the generalizability of fine-grained pass-
level recover via an evaluation on real-world programs built
using LLVM 14 with separate training and testing data.

We provide an in-depth look at the magnitude of compiler-
induced vulnerabilities in 10 popular Linux C/C++ projects.
As part of the study, we uncovered 53 instances of infor-
mation leaks that can be attributed to DSE. For both C/C++
projects and Rust crates, we also evaluate the impact of com-
piler passes on gadget availability and observe that certain
optimization passes, including the Scalar Replacement of
Aggregates (SROA) and the Control Flow Optimizer,
introduce a substantial amount of code reuse gadgets.

We showcase applications that utilize compiler pass infor-
mation for improving security. Specifically, we show how
compiler artifacts enable the verification of the Rich header
for Windows binaries and enable the assessment of the qual-
ity of binary decomposition algorithms. On the former, we
show that our verification approach can identify binaries
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with forged Rich header information with high accuracy. On
the latter, we show that our approach for fine-tuning binary
decomposition algorithms generates robust and intuitive
groupings compared to non-iterative approaches.

We organize the paper as follows. Section 2 introduces relevant
background information on compiler optimization and compiler-
induced vulnerabilities. Section 3 describes our methodology, in-
cluding the corpora of programs we use and the information re-
covery technique we extend. Section 4 explores the magnitude of
compiler-induced vulnerabilities, focusing on dead store elimina-
tion and code reuse gadgets. Section 5 presents applications related
to forensics and binary decomposition, respectively. We discuss
the implications of our work in Section 6, alongside limitations in
Section 7. We conclude in Section 8.

2 BACKGROUND AND RELATED WORK

Modern compilers provide several command-line arguments that
allow users to specify the optimization levels. For C/C++ compilers,
the optimization levels are usually -00, -01, -02, and -03, where
-00 means no optimizations and -03 means all optimizations. Inter-
nally, each optimization level maps to a list of optimization passes.
The LLVM [30] compiler infrastructure, for example, utilizes front-
ends (e.g., Clang) to first convert the source code into the LLVM
intermediate representation (LLVM IR). Then, it applies optimiza-
tion passes at the LLVM IR and machine code levels.

It is important to keep in mind that at compile time, the compiler
does not always apply all optimizations for the given optimization
level. For example, in LLVM 14, there are at least 61 passes included
at -01 optimization level, with an additional 13 passes at -02 and 2
more passes at ~03. Many are only applied if a specific code struc-
ture (e.g., a loop) is present. More importantly, each optimization
pass first determines if an optimization is beneficial. The compiler
only applies the specific optimization if it can improve runtime
performance and does not impact certain security features (e.g., CFI
and memory sanitizers). Therefore, knowing the optimization level
of a binary is not enough to infer the set of passes applied. Even at
the same optimization level, the compiler will subject each binary
function to different sets of optimization passes.

Several studies [39, 52] have proposed techniques to identify
artifacts like the compiler version (e.g., GCC vs. Clang) and opti-
mization level (e.g., 01 vs. 03) of stripped binaries. Recently, we
presented a shallow learning technique [14] for identifying the ap-
plication of individual compiler passes (e.g., early CSE or peephole
optimization) at a function level. While promising, that evaluation
was conducted on a dataset with only four open-source projects,
leaving questions about the broader applicability of the approach.

The Correctness-security Gap. D’Silva et al. [13] introduced the no-
tion of the correctness-security gap where the compiler generates
correct code per the language specification, but it introduces secu-
rity issues. The authors categorized three types of compiler-induced
security issues, namely, persistent state violation, undefined behav-
ior, and side-channel attacks. A persistent state violation occurs
when a memory object persists in the memory beyond its designed
scope. A common optimization that causes this violation is the
dead store elimination (DSE), which may remove instructions that
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erase secret data, causing the secret data to persist in the mem-
ory even though the programmer explicitly erased it in the source
code. The usage of undefined behavior could also lead to security
issues. Another example is overflow detection using signed integer
comparisons, where the programmer checks if a known positive
integer is larger than a negative constant. Compiler optimizations
could also make side-channel attacks possible. Cryptographers of-
ten apply constant time techniques for cryptographic operations
to ensure the control flow and energy consumption stay the same
regardless of the value of a secret. However, compilers may detect
the semantics of such operations and apply optimizations that make
code run faster, thereby enabling a side-channel attack [53].

Hohnka et al. [23] subsequently showed that the correctness-
security gap exists in both the GCC and the Visual Studio compilers.
However, like D’Silva et al. [13], Hohnka et al. [23] demonstrated
the problem using specially crafted code snippets without testing
real-world applications. Simon et al. [48] focused on studying the
impact of certain optimizations on persistent state violations and
side channels. To do so, they composed multiple variants of an
example constant time function, compiled them with different ver-
sions of the Clang compiler, and demonstrated that newer versions
of the compiler could optimize more variants of the constant time
function, thus, being more likely to introduce side channels.

Brown et al. [7] studied the relationship between compiler opti-
mization levels and the amount of code reuse gadgets in the com-
piled program. Their experiments show that at any optimization
level higher than 00, the GCC compiler introduces more code reuse
gadgets and would generate gadgets with undesired side effects.
The authors go on to show that for certain optimization flags, the
compiler introduces more special purpose gadgets (such as system
call gadgets) — but they fell short in showing which optimization
passes induce the observed behavior. In fact, they conclude that
“avoiding negative security impacts on CRA gadget sets is not as
simple as selecting a particular optimization level" [7].

More germane is the recent study by Xu et al. [59] that exam-
ined known compiler-induced security bugs by sifting through bug
reports and commit logs. Their study highlights two common root
causes for these bugs: implicit and orthogonal specification. Implicit
specification occurs when the compiler makes implicit assump-
tions that differ from the developer’s intention; for example, the
compiler may interpret undefined behaviors differently from the de-
veloper’s will. Orthogonal specification occurs when the language
standard lacks certain security-related concepts such as constant
time guarantees or memory lifetime; constant time violations and
information leaks due to dead store elimination are prominent ex-
amples of this root cause. That work is concurrent with ours and,
taken together, sheds light on the prevalence of the correctness-
security gap. Furthermore, the authors studied methods to mitigate
compiler-induced vulnerabilities and concluded that the available
methods all have major drawbacks. Lastly, their study shows that
while developers sometimes follow code practices for writing code
that thwart optimizations, compilers are also becoming increasingly
intelligent and often proceed to apply the optimizations anyway —
further motivating the need for the approach we propose to detect
implicit violations.
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3 SYSTEM DESIGN

Unlike prior works, our approach creates a robust and more gen-
eralizable model that can be directly used in real-world applica-
tions, including forensic analysis, vulnerability analysis, and library
identification. To do so, we train an architecture specific machine
learning model to identify compiler optimization passes applied to
binary files. Figure 1 provides an overview of our approach. First,
we use an instrumented compiler (@) to generate the ground truth
of compiler pass information applied to each function during the
compilation process. Then, we disassemble the compiled binary
and extract features (@) on the corpus of functions. Afterwards, we
use the compiler pass ground truth information to perform feature
selection and generate a labelled dataset for training (®). Finally, we
use statistical learning techniques to build models for each compiler
pass (@). We describe each in turn.

3.1 Approach

Compiler Instrumentation. We modified the LLVM compiler to
obtain a list of compiler passes that alter a function during the com-
pilation process. Our modifications to the compiler do not interfere
with code generation in any way, and a program built by the modi-
fied compiler is identical to that built using the same version of the
original LLVM compiler with the same flags. In order to accurately
identify the list of passes that optimize a code segment, we incor-
porated code to log the passes that modify functions of a program
during the compilation process. Note that throughout our workflow
of compiler pass information recovery, we only use the information
generated by the modified compiler as ground truth for training
and validation. We also log the instructions that the Dead Store
Elimination pass eliminated and recorded the corresponding rea-
sons for their removal. For ground truth, we generate a pass log file
and the target binary for each program we compile. The pass log file
records pass types executed at all levels, including the ModulePass,
CallGraphSCCPass, FunctionPass, LoopPass, and MachineFunction-
Pass types. Each pass type modifies the code at various levels. For
example, ModulePass and CallGraphSCCPass are inter-procedural
optimizations for source files and call graphs. FunctionPass and
LoopPass, on the other hand, are intra-procedural optimizations for
individual functions and loops within functions, respectively. The
log file contains the list of compiler passes that modify the code,
and for intra-procedural passes, the log file includes the function
name that the pass modifies.

Feature Type Example
Opcode mul
Instruction mov #MEM# %rip %ri15
Register rilw

cmp | cmove
jmp #TARGET# | lea #MEM# %rip %rdi
First instruction START test %edx %edx
Last instruction END cmp #MEM# %rbx %edx

Table 1: Feature types used for optimization pass recovery

n-gram of opcodes
n-gram of instructions

Feature Extraction. Following the compilation process, the next
phase entails disassembling the binary objects and extracting a set
of features. We begin by disassembling the code sections of the
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Figure 1: An overview of the model building and training.

binary file and transforming the disassembled code into a list of
instructions. We then extract features using this list. Table 1 shows
the type of features we use. Each feature captures the presence of a
specific code pattern. A feature vector is the collection of features
in a function, where each value is either True if the function in-
cludes the pattern or False otherwise. We use an n-gram encoding,
with n ranging from one to three, to represent features based on
instructions and opcodes. For instructions, we normalize memory
addresses to #MEM#, call targets to #TARGET#, and immediate val-
ues to #IMM#. Each register is a feature. We also include the first
and last instructions within a function as features because certain
passes could change a function’s prologue and epilogue. The fea-
ture vector values are binary (as opposed to being represented as
a bag of words or using Word2Vec [34]) to deal with the fact that
compiler optimizations can change the ordering of instructions and
the specific opcodes and registers used.

Feature Dataset Labeling. We combine the features of each
function with the compiler pass labels to generate the feature
dataset we use for training. We associate the list of compiler passes
applied to each function to generate the training labels. Utiliz-
ing the pass log collected during the compiler phase, we isolate
function-level optimization passes (FunctionPass, LoopPass, and
MachineFunctionPass) and discard inter-procedural ones. Some
functions may have multiple labels resulting from different opti-
mization passes. We incorporate these labels in the feature dataset,
where each entry contains the project name, binary filename, func-
tion name, optimization level of the binary, the features, and the
list of compiler passes applied to the function.

Statistical Learning. We use a multi-label (i.e., one function could
be mapped to multiple passes) classifier that contains a collection
of models. We train a separate model for each compiler pass using
an approach based on a tree-based learning algorithm. In our case,
the models are binary classifiers, predicting whether or not the
compiler applied a specific optimization pass to a given function.
We apply feature selection to limit the total amount of features we
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use for each model to improve performance. For feature types with
an overwhelming amount of features (such as 3-gram of instruc-
tions), we select the m=1, 000 most frequent features corresponding
to an optimization pass. Since we train multiple models, each ded-
icated to a specific optimization pass, the importance of features
varies among models. For instance, in the case of the Post-RA
Pseudo Instruction Expansion pass, the most important fea-
ture is START movslq %ecx %rax, indicating that the function
commences with this sequence. Conversely, the most important
feature for the Combine Redundant Instructions pass is mov
%10 #MEM# %rsp | mov %rax #MEM# %rsp representing a 2-gram
of instructions. Appendix B lists the top three features for the 14
optimization passes listed in Table 3.

To ensure we use balanced training data, we randomly select a
set of functions from the training set consisting of an equal number
of optimized and non-optimized functions. For instance, for popular
passes applied to numerous functions, we randomly select 15,000
functions with an optimization pass and another 15,000 without an
optimization pass.

3.2 Model Evaluation

To conduct our evaluations, we curated a diverse set of binaries
from projects listed in Table 2: popular Linux C/C++ programs
and libraries, popular Windows C/C++ programs and libraries, and
popular Rust crates. For all binary corpora, we built the programs
and libraries as X86-64 binaries. For Linux C/C++ programs and
libraries, we collected our binaries from two sources. First, we col-
lected the programs included in the OSS-Fuzz project [19] (Corpus
I). Second, we use the programs found in the firmware of the ASUS
RT-AC88U router (Corpus II). We retrieved the list of open-source
programs by analyzing the firmware binary of the ASUS RT-AC88U
router with binwalk [43]. We then downloaded the source code
of the latest version of these programs and built them to X86-64
binaries. We only include projects that we could successfully build
using LLVM. Finally, we use the dataset from our previous work
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[14] (Corpus III), which has been pre-processed and is in the format
of a CSV file. For all the Linux C/C++ programs whose source code
is available (Corpora I and II), we compiled these projects using
optimization levels 00, 01, 02 and 03. This resulted in a total of
12,576 binaries for Corpus I and 5,599 for Corpus II across all builds.

Corpus SEE::e Language Platform I()jr:,’i ‘::tt
I OSS-Fuzz C/C++ Linux 36
it X86-64 Router Linux 33
Programs
m Duetal [14] C/C++ Linux 4
v conan.io C/C++ Windows 235
\% crates.io Rust Linux 200

Table 2: A summary of our corpuses of programs.

For Windows programs and libraries, we retrieved all open-
source repositories for programs that support Conan [25], a C/C++
package manager (Corpus IV). Similar to the Linux binaries, we
only include projects that we could build using the Microsoft Visual
Studio compiler. For all programs in Corpus IV, we compiled them
using three different versions of the Microsoft compiler and two
optimization levels, namely Debug and RelWithDebInfo (Release
with debug symbols). In total, we built 9,429 Windows binaries.
Lastly, we pulled the top 200 Rust crates from crates.io as of
November 2022 (Corpus V).

Experimental Setup. We implemented our pipeline using several
tools. As noted earlier, we modified the LLVM compiler to generate
the ground truth for the optimization passes. We use the same base
version of LLVM (version 14 commit ID c59ebe4) as previously
[14] to ensure that our compilation environment matches that of
Corpus III. We used objdump to disassemble Linux binaries and
generate the vector of instructions for each function.

We experimented with several learning models (see Appendix A)
and ultimately choose to use LightGBM [27] as our multi-label clas-
sifier because it attained the best overall performance in compiler
pass classification. The feature extraction tool and our classifier are
written in Python. We use helper functions from Scikit-learn [38]
to compute metrics. We train our multi-label model on a desktop
machine with Core 19-12900KF processor and 64GB of RAM. For
the evaluation of our classifier, we use Corpus I and Corpus III for
training, while Corpus II serves as the testing set. This separation
ensures that the model’s performance is accurately assessed on
unseen data. In total, the training set and the testing set include
140,938 and 65,605 unique functions, respectively.

3.2.1 Findings. Our evaluation uses two metrics: recall and the F-1
score. The recall measures the proportion of true positive predic-
tions out of all actual positive instances, including true positives
and false negatives. A high recall indicates few false negatives com-
pared to true positives, helping us minimize false negatives. The F-1
score is the harmonic mean of precision and recall, combining both
metrics into a single number. This F-1 score is instrumental when
the costs of false positives and false negatives differ. In our design
goals, false negatives are more impactful than false positives. For
example, our classifier can be used to alert developers to instances
where the compiler applies potentially harmful optimization passes
to their code. A false negative means that our classifier missed a
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Trainin, Testin, [14] New New

Optimization Pass Samplef Sampl. egs Recall | Recall F-1
(%) (%) (%)

Dead Store Elimination 6735 994 85.8 71.7 59.9
Aggressive Dead Code 2322 500 83.5 776 678
Elimination
Bit-Tracking Dead Code 8611 966 875 772 673
Elimination
Remove Dead Machine 30000 1005 88.6 859 795
Instructions
Early Machine Loop
Invariant Code Motion 30000 1014 93.3 94.2 B!
Machine Loop Invariant
Code Motion 1755 426 89.0 86.3 80.1
Loop Invariant Code 30000 995 90.6 913 872
Motion
Machine Common
Subexpression 30000 999 88.1 89.1 84.1
Elimination
Early CSE 30000 1018 92.2 91.9 88.1
Early CSE w/
MemorySSA 30000 962 88.6 84.9 78.0
Loop Strength Reduction 30000 1057 95.4 949 925
Peephole Optimizations 30000 993 98.0 95.6 93.6
SROA 30000 1028 = 99.1 98.7
Control Flow Optimizer 30000 984 - 98.3 97.6

Table 3: Compiler pass prediction. Orig. recall denotes the
values reported in [14]. The ’-’ symbol means unreported.
The two instances where recall differs significantly between
the evaluations are highlighted in dark grey.

potentially harmful optimization pass, which could make the com-
piled program less secure. In contrast, a false positive occurs when
our classifier incorrectly predicts a harmful optimization pass that
does not impact the compiled program. Therefore, the recall score
is more impactful than precision in the context of privacy-sensitive
applications, as developers can manually verify and exclude false
positive cases.

We evaluate our model on 68 different compiler passes. Table 3
presents the classification performance for a subset of the compiler
passes. We choose this subset to compare with prior work [14] and
to highlight the passes that introduce functional code reuse gadgets
in compiled programs (see Section 4.2). Our technique achieved an
average F-1 score of 84.4% across the 68 compiler passes. The use
of distinct training and testing programs is likely the reason for
the degradation in performance. The overall results show that the
average recall is 89.1%. Most of the passes with large set of training
samples achieve high F-1 scores. In Section 6, we discuss ways to
enhance the classifier with additional contextual information.

Looking at the most significant features (see Appendix B) for the
passes in Table 3, it is not difficult to see why the model performed
well on some of the passes. For example, for the Machine Common
Subexpression Elimination pass, the most significant feature
is a single opcode, punpckhqdq (unpack and interleave high-order
quadwords). As a MachineFunctionPass, this optimization pass
directly modifies the X86-64 machine code to generate efficient code
using this rare opcode. We surmise that this pass is one of the few, if
not the only, pass that utilises this distinguishing opcode. Similarly,
all top 3 features for the Early Machine Loop Invariant Code
Motion pass are the first instruction of a function, with the one of
the features including another rare opcode, vcvtsd2ss.

Lastly, we note that although our classifier does not perform as
well as we would have liked on the DSE and Dead Code related
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passes — due, in part, to the limited number of samples we have —
we nevertheless explore if we can use the DSE model to flag poten-
tial problems in binaries from open source projects. Our motives for
doing so stems from the fact that although the security community
has raised the alarm about DSE [7, 13, 48, 62], there have been
limited evaluations on real world data. We conduct such a study in
the following section.

4 ON THE PREVALENCE OF
COMPILER-INDUCED VULNERABILITIES

Since the detection of risky optimizations is a natural downstream
application of compiler pass information recovery, we set out to
empirically assess the scope of the secutity-correctness gap on real-
world projects. To narrow the purview of that study, we focused
on two scenarios that easily lend themselves to abuse: (i) when the
dead store elimination optimization pass lets sensitive data persists
in memory against the developer’s will, and (ii) when optimization
passes increase the amount of code reuse gadgets made available to
an adversary. Our multi-label classifier puts us in a unique position
to study these cases.

4.1 DSE Still Considered Very Harmful

For scenario (i), we use all 4,555 Linux binaries that were built
at -03 optimization level in Corpora I and II. We pay attention
to memset calls that are removed by the optimization before the
end of the data structure’s scope. Because LLVM converts known
operations that perform sequential memory writes to memset calls
before applying this optimization, focusing on memset is sufficient
for our purposes.

As the Dead Store Elimination optimization pass removes
some instructions that are irrelevant to our study, we apply filtering
to the results to keep only memset instructions that write a constant
value to a variable at the end of the variable’s scope. We utilize
two filters: first, since our instrumentation to the LLVM compiler
tracks the reason why the pass removes an instruction, we ignore
instruction removals that do not match our interest (e.g., unneces-
sary variable initialization before it is overwritten by new values);
second, we automatically inspect the source code corresponding
to the removed instructions and check if the variable is not used
again after the removed memset instruction.

4.1.1
during compilation, we discovered 53 removed dead stores across 10
projects that have security implications. Table 4 summarizes the re-
sults. Many affected projects are popular programs found on a wide
range of devices such as busybox, a common Unix utility program
found on most embedded-Linux devices, and wpa_supplicant, a
Linux utility that allows the system to connect to WPA-secured
wireless access points found on many distributions. In what follows,
we discuss some of our findings.

Results. Using our approach to flag potential issues that arise

Example I: Local Stack Data in wpa_supplicant. This utility
handles the authentication for encrypted wireless networks and
processes the access point key. Listing 1 shows part of the
wpa_supplicant_set_wpa_none_key that processes the key. This
function determines the type of the group cipher for the current
wireless access point, writes the key to a temporary local variable,
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Version/ Total Local Heap

Project C : Domain Removed Stack
ommit Data

memset Data
Linux-PAM 1.5.2 Utility 18 9 9
Kamailio 961£276 SIP Server 11 11 0
Busybox 1.35.0 Utility 6 4 2
WPA_supplicant ~ 2.10 Utility 5 5 0
Proftpd 4520af4 FTP Server 4 1 3
Netatalk 3.1.11 AFP Server 3 3 0
Varnish-cache 99607ac HTTP Proxy 3 3 0
Tmux 85ef735 Terminal 1 0 1
e2fsprogs 96185€e9 Utility 1 0 1
Lighttpd1.4 1.4.64 HTTP Server 1 1 0
Total 53 37 16

Table 4: Statistics of the removed dead stores by Project.

key, and then calls another function, wpa_drv_set_key, to store
the key appropriately. Before this function returns,
wpa_supplicant_set_wpa_none_key calls os_memset (a macro
that redirects to memset) to erase the local variable key from the
stack. However, at the 03 optimization level, the Dead Store Elim-
ination pass determines that this memset is unnecessary because
key is not used anywhere after it is set to 0, causing sensitive data
to persist on the stack. If an information leak happens between
the time when this function returns and when the stack data is
overwritten, the key may be exposed.

int wpa_supplicant_set_wpa_none_key (
struct wpa_supplicant *xwpa_s,
struct wpa_ssid xssid)

{
u8 key[32];
switch (wpa_s->group_cipher) {
case WPA_CIPHER_CCMP:
os_memcpy (key, ssid->psk, 16);
case WPA_CIPHER_GCMP:
os_memcpy (key, ssid->psk, 16);
3
ret = wpa_drv_set_key(wpa_s, alg, NULL, o,
1, seq, 6, key, keylen,
KEY_FLAG_GROUP_RX_TX_DEFAULT);
os_memset (key, 0, sizeof (key));
return ret;
b

Listing 1: Code snippet from the wpa_supplicant utility

Including this example, we found a total of 37 instances where
instructions that erase stack data were removed by the compiler’s
Dead Store Elimination pass. We manually confirmed that several of
these vulnerabilities could be exploited.

Example II: Heap Data in Linux-PAM. Linux-PAM (Pluggable
Authentication Modules) is a framework for user authentication in
Linux. As the name suggests, Linux-PAM requires access to secret
data including user passwords. Unfortunately, in multiple locations
within Linux-PAM, the developers rely on memset to erase secret
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data for both stack and heap memory. Here, we show an example of
the removed memset that causes secret data to persist on the heap.

PAMH_ARG_DECL (int verify_pwd_hash,
const char xp, char =xhash,

unsigned int nullok)

struct crypt_data #*cdata;

cdata = malloc(sizeof (xcdata));

if (cdata != NULL) {
cdata->initialized = 0;
pp = x_strdup(crypt_r(p, hash, cdata));
memset (cdata, '\0', sizeof(*xcdata));
free(cdata);

Listing 2: Code snippet from the Linux-PAM utility

Listing 2 shows a segment of the function verify_pwd_hash,
one of the functions that Linux-PAM uses to verify a password. This
function allocates a heap object, cdata, as a buffer for the crypt_r
library function to hash the password p. After crypt_r returns,
the function uses memset to erase the buffer cdata by filling the
memory with 0 before freeing the buffer. However, since cdata
is not used before being freed, the compiler determines that the
memset, which is the last write to the buffer, is not needed and
removes it. As a result, this buffer used by crypt_r would persist
in the heap memory after verify_pwd_hash returns until the same
heap memory is allocated and overwritten again. A heap overread
exploit could leak the secret data stored in this buffer.

Concurrent to our study, Linux-PAM developers independently
discovered and patched all but one of the removed dead stores
we identified with our approach. For the outstanding undiscovered
unsafe memset call in shal_process, the developers released a new
patch [9] based on our findings.

Including this example, we found a total of 16 instances where
instructions that clear heap data were discarded by the compiler.

DISCUSSION. The fact that even popular security-sensitive
programs such as Linux-PAM still includes code that could cause
information leaks when built at high optimization levels underscore
the severity of the threat posed by compiler-induced vulnerabili-
ties and motivates the need for the technique we propose. Once
a DSE-induced information leak is confirmed using our approach,
developers can follow the recommendations of Yang et al. [62],
such as using secure functions (e.g., memset_s, explicit_bzero,
and SecureZeroMemory) to fix the identified problems. Developers
could also use the volatile attribute for memory operations in
order to mitigate the threat from a compiler-induced vulnerability.

4.2 There Be Gadgets

Brown et al. [7] observed that compiler optimizations can intro-
duce code that increases both the quantity and quality of code reuse
gadget sets [44]. Their findings appear to show that this problem
is ubiquitous across many compilers and optimizations levels, but
their quantitative analysis was insufficient to draw conclusions
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about which specific behaviors caused negative security impacts.
To dig deeper into the underlying causes, we set off to measure
which passes played a pivotal role in introducing types of expressive
gadgets that allow for critical actions, including register operations,
memory operations, call gadgets, and stack pivots. We do so for
both C/C++ and Rust programs. In the case of Rust, we note that
while code reuse attacks such as return-oriented programming
occur on languages that do not enforce type safety, previous stud-
ies [3, 58] have shown that memory safety bugs continue to exist
in projects that utilize unsafe[37] Rust, making code reuse attacks
theoretically possible there as well.

Experimental Setup. For scenario (ii), we use Corpora I, Il and V.
Since our goal is to find the optimization passes responsible for the
issue, we need fine-grained control on running optimization passes
during compilation such that we can evaluate the compiled binary
with and without an optimization pass. Therefore, for C/C++ pro-
grams, we further modified the LLVM Clang compiler to generate a
binary after each compiler pass runs such that we can measure the
amount of gadgets before and after applying an optimization. Rust
programs, however, cannot utilize the same feature in the compiler.
Therefore, for Rust crates, we simply measure the difference in the
amount of gadgets between the Debug build and the Release build.

We use the open-source gadget scanning tool Ropper [47] to
find gadgets. Ropper supports grouping the gadgets into different
types such as memory writes, memory loads, register loads and
stack pivots. We utilize this feature to categorize the gadgets. For
stack pivots, Ropper also includes gadgets that are not exploitable
(e.g., gadgets with only a return instruction with offset), so we
exclude these gadgets in our analysis.
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Figure 2: Changes in the number of gadgets that load a regis-
ter after the SROA pass. The X-axis represents the density of
the gadgets (i.e., amount of pivots divided by the code size in
pages). The Y-axis shows the amount of gadgets. Each dot is
a binary in Corpus L.

4.2.1 Results for C/C++. Overall, we confirm that the increase in
gadgets is pervasive. For the Scalar Replacement of Aggregrates
(SROA) function pass, in particular, we find that it frequently in-
troduces gadgets that load stack data into registers (e.g., pop ri14;



CCS *23, November 26-30, 2023, Copenhagen, Denmark

ret;). For example, Figure 2 depicts the changes in the amount of
register loading gadgets and the density of gadgets for binaries in
Corpus I. We show the gadget density in addition to the amount of
register because advanced return-oriented programming attacks
such as JIT-ROP [49] succeed faster in situations with high gadget
density. There, the pass introduced 5.04 register loading gadgets on
average with a median of 4 gadgets, and for binaries in Corpus II,
this pass introduced an average of 6.98 gadgets of this type with a
median of 5 gadgets. We observed that in the compiler pipeline, this
pass always runs multiple times and introduces most of the new
gadgets in the first iteration. We suspect that the compiler keeps
running a specific set of function passes until the code converges
or until a limit is reached.
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Figure 3: The impact of the SROA pass on the amount of
stack pivot gadgets in binaries in Corpus L.

We also found function passes that introduced additional gad-
gets that manipulate register values. These results are provided in
Appendix 9. More interesting is the fact that several passes show
an impact on the amount of stack pivot gadgets. Stack pivot gad-
gets allows an attacker to change or “pivot" the stack pointer to
an attacker-controlled location in memory. This gives attackers far
more flexibility and control over the exploitation process, enabling
them to bypass certain security measures (notably, address space
layout randomization (ASLR) and stack canaries) to craft more ef-
fective ROP chains. For Corpus I, the first instance of SROA function
pass introduced the most stack pivot gadgets among all runs of
function passes. On average, this run of SROA added 2.53 stack pivot
gadgets to each binary. Figure 3 shows the impact of SROA on the
amount of stack pivot gadgets and the density of the gadgets. For
Corpus II, three passes introduced a measurable amount of stack
pivot gadgets. Simplify the CFG, a function pass that runs early in
the compiler pipeline, added 2.33 stack pivot gadgets on average the
first time it ran and introduced another 2.28 stack pivot gadgets on
average later in the pipeline when it ran again. EarlyCSE, another
function pass early in the pipeline, added 2.89 stack pivot gadgets
on average. Other than function passes, one strongly connected
component pass, the Function Integration/Inlining pass, also
introduced stack pivot gadgets. On average, this pass added 3.72
stack pivot gadgets to each binary.
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4.2.2  Results for Rust. We built projects from Corpus V using 4
recent versions of the Rust compiler released between 2021 and
2022, ranging from version 1.52 to 1.62. Figure 4 shows the average
differences in the amount of gadgets for each gadget type. Surpris-
ingly, instead of introducing more gadgets, the release optimization
level causes the binary to contain less gadgets than the debug op-
timization level for most gadget types. The pattern is consistent
across all five versions we tested. Among the ten gadget types,
only three types, increment register, subtract register and
clear register, see a measurable increase in the amount of gad-
gets when compiled with the release optimization level, but these
gadget types are generally not as powerful [24] as the others.

Avg. changes in # gadgets

Call Write

Mem

Load
Mem

Add IncReg Load
Reg Reg

Sub
Reg

XCHG  Clear
Reg Reg

Stack
Pivot

Gadget type

Figure 4: Average difference (between release and debug
builds) for each gadget type among the top 200 Rust crates
built using 4 versions of the Rust compiler.

To try to find a reason for the decrease of functional gadgets, we
examined the list of passes that modified the code during compila-
tion for these Rust crates at the release optimization level when built
with the most recent version of the Rust compiler, 1.62. We found
that the same optimization passes that introduce significantly more
gadgets for C/C++ programs still execute for Rust crates. For exam-
ple, the SROA pass that introduces more “load register” gadgets and
stack pivot gadgets for C/C++ programs is also frequently applied
to Rust functions. In the 200 Rust crates, the SROA pass was applied
799,987 times. Similarly, Control Flow Optimizer, the function
pass that introduces more “increment register” gadgets for C/C++
programs, was applied 61,517 times in the Rust crates. Hence, even
though the passes that introduce the most gadgets in C/C++ pro-
grams are still applied in Rust, they do not have the same impact on
gadget availability when optimizing Rust programs. Unfortunately,
given the limited documentation on the internal workings of the
Rust compiler and the Mid-level IR (MIR) optimizations it applies,
we cannot provide a definitive answer for why this behavior exists.
That said, we suspect that the decrease in the amount of functional
gadgets is likely a side effect of security instrumentation added
by the Rust compiler, including type checking on the High-level
IR (HIR), borrow checking on MIR, and unsafety checking on the
recently introduced Typed High-level IR (THIR) [32, 51], before
invoking the LLVM compiler. Given the dearth of information re-
garding these enhancements, the exact reasoning for the observed
behavior remains an open problem.
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DISCUSSION. Our study shows that for C/C++ programs, sev-
eral optimization passes introduce functional gadget sets that are
useful to an attacker. Unlike the case of information leak issues
that could be mitigated by using special code patterns, an increase
in code reuse gadgets is more challenging to address: the security
impacts are difficult to quantify [7], and there does not appear to
be a clear workaround for developers. One unsatisfying solution
is to write everything in meticulously crafted assembly code. An
equally unappealing option is to turn off all optimizations.

A third option is to use pass-level information to identify the code
that was optimized and then use a binary recompiler [54, 55, 57] to
patch the code. One option for doing just that is to use an x86_64
recompiler like Egalito [57]. Like other binary recompilers, Egalito
was built with the goal of helping security-conscious developers
trade security for performance in order to thwart specific threats
(e.g., advanced code reuse attack strategies [5, 49, 65]). To date, these
binary recompilers have been used to implement JIT-shuffling pro-
tections and software-only control flow enforcement [57], defenses
against speculative execution attacks, and even as a last ditch effort
to disable Clang’s tail call elimination optimization [7]. We leave
the exercise of implementing plugins that rewrite risky code blocks
identified by our approach as future work.

The situation is somewhat better with Rust, where the amount
of expressive functional gadgets is low across compiler versions.
But, Rust comes with its own set of challenges, especially at the
foreign function interface (FFI) boundary where unsafe Rust is
virtually unavoidable 2, 28, 58]. Moreover, for large applications,
the rewrite or translation to memory safe languages must be done
with care to avoid other vulnerabilities [33, 36].

We acknowledge that while it is important to consider the im-
pacts of different optimizations on gadget availability, the existence of
expressive gadget sets does not necessarily make a binary less secure.

5 REAL WORLD SECURITY APPLICATIONS

To showcase how one can leverage the recovered compiler prove-
nance information, we now present two downstream applications.
The first application flags discrepancies between the information
contained in the Rich header of Windows binaries and the actual
information we infer regarding the compilers used to build the
binary under scrutiny. The second application highlights how low-
level compiler pass information can be used to dissect a binary into
smaller components comprising of the third party libraries it uses.
We discuss each in turn.

5.1 Detecting Forged Rich Headers

Windows binaries built with Microsoft Visual Studio (VS) compiler
include an undocumented section of the metadata, the Rich header,
that includes the list of the ID of compilers, linkers, and other tools
used when building binaries. Once the Rich header became more
well known, malware analysts started using the compiler informa-
tion within the Rich header as a supporting indicator in malware
attribution [40, 56]. As expected, malware authors soon started to
manipulate the Rich header to throw off threat hunters. Motivated
by an incident [18] where the authors of the OlympicDestroyer
malware fabricated the Rich header to impersonate the Lazarus
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group, we built a tool based on compiler provenance that detects bi-
naries with tampered compiler ID information. The report indicates
that the authors deliberately copied the Rich header from another
malware family to mislead attribution. By comparing OlympicDe-
stroyer to the mimicked malware, the analyst found an exact match
between the Rich headers but a discrepancy in the code structure.
The analysts manually reverse-engineered and inspected the strings
and the startup sequence to conclude that the code was generated
using MSVS 2010 and not MSVSé, as claimed by the Rich headers.

Our Approach. We modify the technique in § 3.1 to detect the list
of compilers involved in building a Windows binary. We use IDA
Pro [22] to disassemble the Windows binary files. For this specific
application, we increased the number of features to the 3,000 most
frequent for each type since we are now classifying entire binaries
rather than functions. We then augment the classifier to predict the
list of compiler IDs used to build a binary, and compare the predicted
IDs with the list of compiler IDs included in the binary’s Rich header.
Our current prototype includes two naive approaches for making
comparisons. First, we include a conservative approach that flags
binaries whose Rich header includes compiler IDs that our classifier
does not predict. This approach allows the classifier to include false
positives. Alternatively, we include a strict comparison mode that
flags any binary whose Rich header does not exactly match the
predicted compiler IDs. We acknowledge that these approaches are
not robust against adversarial attacks.

5.1.1  Evaluation. Since we lack ground truth for OlympicDestroyer,
we used the projects in Corpus IV to build several versions of the
binaries. We used three different versions of the Visual Studio com-
piler (VS2017, VS2019, and VS2022) and two compiler optimization
options, namely the debug and release. In total, each project had
six sets of binaries corresponding to the compiler versions and
optimization options. The compilers build programs in C and C++
languages and link static libraries built by other compilers. Each
language compiler has a unique compiler ID that the binary’s Rich
header documents. Furthermore, the statically linked libraries have
their own Rich headers that compilers append to the final binary’s
Rich header. There are 14 different compiler IDs in total.

We set aside 10% of the binaries from Corpus IV as a validation
set. We split the remaining binaries into a training set (75%) and a
testing set (25%) for each compiler ID. We balance the data following
the same procedure described in Section 3.1, where the training
and testing set of each compiler ID contains the same amount of
positive and negative samples.

5.1.2  Findings. Table 5 shows the result of compiler ID identifi-
cation. On average, the classifier achieves an F-1 score of 97.2%.
Furthermore, it attains a perfect score (100%) for the Visual Studio
2022 (VS2022) compiler family. We examined the feature impor-
tance to gain insights into why the classifier performed well. An
analysis of the top features revealed that different minor versions
of the same compiler share common code patterns. For example,
four minor versions of the V52022 compiler, 1047c4f, 01057c4f,
01047cc1, and 01057cc1, all share the same feature callq *%rax
| addq #IMM# %rsp in their list of top 15 features, while no other
compilers have this feature. Some features also appear in almost
all compilers after a specific version. For example, the feature movq
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Compiler ID  Compiler Name g:;ﬁf STa emSt:;egs I(-;;
1046852 [C]VS2017 4636 1546  96.5
1056852 [C++] VS2017 4635 1545  95.9
1047552 [C]VS2019 4635 1545  96.2
1057552 [C++] VS2019 4633 1545  96.5
01047c4f [ C]VS2022 4633 1545 100
01057c4f [C++] VS2022 4632 1544 100
010469a8 [ C ] Unknown 3729 1243 945
01047ccl [C]VS2022 3703 1235  98.7
010475c2 [C]VS2019 3688 1230 94.8
010575c2 [C++] VS2019 1336 446  95.7
01057ccl [C++] VS2022 1326 442 96.1
010569a8 [C++] Unknown 1297 433 96.5
0104784b [C]VS2022 1249 417 100
0105784b [C++] VS2022 474 158 100
Average 3186 1062 97.2

Table 5: Classification result on compiler ID identification.

#IMM# #MEM# %rip | movq #IMM# #MEM# %rip is among the top
15 features for nine compilers for VS2019 and VS2022.

Next, to assess how well this classifier can be used to verify
the validity of information contained in the header, we simulated
a scenario where a binary’s Rich header may contain fraudulent
information. We use the verification set for this experiment. We
divide these binaries into two groups to generate the positive and
negative sets. For binaries in the positive set, we randomly shuffle
parts of the Rich header information so that it contains incorrect
compiler IDs; for binaries in the negative set, we keep their Rich
header unchanged.

Under the conservative comparison configuration, the verifier
achieves an F-1 score of 95.8%. Out of the 1032 binaries, the classi-
fier correctly verifies 989 of them. For cases where it fails, 30 are
false positives (i.e., the verifier incorrectly flags the Rich header
as tampered), and 13 are false negatives (i.e, the Rich headers are
tampered with, but the verifier fails to detect that). Using the strict
comparison setting, the F-1 score drops to 86.5%. In this case, it
correctly verified 891 binaries while inducing 137 false positives
and four false negatives. The increase in false positive cases is ex-
pected: the classifier needs improvement to distinguish between
the C/C++ compilers of the same version. For the false negatives,
the claimed Rich header includes one additional compiler where
its C/C++ compiler counterpart of the same version exists in the
correct Rich header. We posit that the F-1-score could be improved
using the decomposition technique discussed next.

5.2 Grouping Third-Party Libraries

Binary decomposition of programs is becoming increasingly impor-
tant as software programs grow larger and more complex — e.g., of-
ten importing code from many third-party libraries to accomplish
some needed functionality. Binary decomposition is the process of
dissecting a binary into groups, where each group consists of a set
of related functions from the same library or program. This capa-
bility is helpful for both developers and end-users alike. Analysts
could decompose the binary for benign programs for third-party
library detection, enabling downstream tasks such as license vio-
lation detection and vulnerability detection. Similarly, developers
can use the extracted information to decide if to include a third-
party library in their build process. In the case of malicious binaries,
binary decomposition could help forensic analysts find correlated
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groups of functions that provide more context for attribution and
malware behavior analysis.

Towards these objectives, several proposals for binary decom-
position have been suggested. Karande et al. [26], for example,
decompose a C++ binary into groups where each group consists of
functions in the same C++ class. By contrast, the approach of Yang
et al. [61] (coined ModX) breaks a binary into groups of functions
where each group consists of functions that are related to each other
(e.g., together, they perform a specific task) and come from the same
library or program source. ModX utilizes a community detection
algorithm to dissect the call graph of a binary into groups. However,
using these techniques to assist us with our forensic evaluations
of complex binaries, we found that the commonly used algorithms
provided very different groupings. There was no immediate way to
access the quality of their respective output.

After inspecting a handful of binaries that use external libraries,
we noticed that certain functions in the same library seemed to
have similar sets of optimization passes applied, likely due to be-
ing built by the same compiler version with similar compiler flags.
Based on that observation, we designed a method for improving
the decomposition process by instead using compiler pass informa-
tion as a stopping criterion for the iterative Girvan-Newman (GN)
community detection algorithm [35] used by ModX [61].

Our Approach. We designed and implemented a prototype that ac-
cepts a binary file, extracts the call graph, recovers the fine-grained
compiler pass information, and then uses the GN community detec-
tion algorithm to infer groupings of functions. The GN algorithm
operates in rounds where it iteratively dissects the call graph of a
binary into groups of related functions and continues doing so until
each function forms its own group. We modified the algorithm to
use compiler pass information to select the best result among all
its iterations.

To generate call graphs, we simply use objdump to disassemble
the binary into functions and look for direct call instructions in
each function. For compiler pass information recovery, we use the
technique described in Section 3 to identify the list of compiler
passes applied to each function.

To determine the best result across all iterations, we use a metric
based on the similarity of the compiler passes applied to the func-
tions in the same group. If the similarity is higher than a pre-defined
threshold, we consider the grouping robust (i.e., self-consistent). We
examine thresholds ranging from .1 to 0.9, with a step size of . 1.
To generate an overall score, we measure the ratio of the number
of groups that meet the threshold divided by the total number of
groups. We compare the difference in the score for each round and
select the round with the highest difference.

5.2.1 Evaluation. To collect ground truth, we built a custom pro-
gram that gives us full control of the libraries used and precise
knowledge of the source of each function. Our program is a TCP
server program that encrypts and decrypts messages with a symmet-
ric cipher. The program uses libhydrogen [12] for its encryption
and decryption operations and libc for threading, string opera-
tions, and networking. Internally, the libraries also use functions
from libgcc and 1ibgcc_eh and a single function from libclang_rt.
We compile our program and the 1ibhydrogen library statically.
For other libraries, we use the default version in Fedora Linux 37.
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To obtain a mapping of function names and their corresponding
libraries, we use objdump to disassemble the static library file (. a
file) of 1ibhydrogen and all static library files in /usr/1lib and
/usr/1ib64 to retrieve a list of function names for each library. We
use the mapping for ground truth.

We compare our results with three alternative algorithms for
extracting communities from large networks: Greedy Modularity
Communities [11], Asynchronous Label Propagation [41], and Lou-
vain Community Detection [6]. We chose these algorithms because
implementations are readily available, use the same input (i.e., only
the call graph) as GN, and support directed graphs. Unlike GN,
which outputs results after each round, these algorithms output the
best groupings (based on internal metrics) at termination.

. Avg. Median
. Consistent
Algorithm Groups G Group  Group
roups . .
Size Size

Greedy 28 16 14.81 3
Asynchronous 215 67 4.44 3
Louvain 180 156 5.14 2
Girvan-Newman 86 72 9.54 5

Table 6: Comparison of algorithms. A self-consistent group
means that all its functions belong to the same library or
program source. Avg/median size is the average/median size
of self-consistent groups.
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Figure 5: Visualization of decomposed grouping using our
modified GN algorithm. Best viewed in color. Each circle
represents a group and each pentagon represents a function.
Disjointed nodes are not displayed.

5.2.2  Findings. Table 6 summarizes the result with different com-
munity detection algorithms. For GN adapted with our selection
approach, the best result was achieved at a threshold of @. 6 (Appen-
dix D provides the results at other thresholds). A close examination
shows that the Louvain Community Detection and GN outper-
form the others based on the notion of having many self-consistent
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groups. For the Louvain Community Detection, 86% of the groups
are consistent groups versus 83% for GN. While it may seem that
Louvain Community Detection generates a better result, the down-
side is that it generates small groups. Within the 156 consistent
groups for Louvain, the average and median group sizes are only
5.14 and 2 functions, respectively; on the other hand, for the 86
consistent groups found using our modifications to GN, the average
and median group sizes are 9.54 and 5 functions. Our conjecture is
that for forensics tasks, a smaller number of large groups is more
favorable than a larger amount of tiny groups. The rationale is
based on the idea that larger groups with more functions can better
reveal intra-group code similarity.

Figure 5 visualizes the decomposition using the modified GN
algorithm. There, each node is a group, and each edge represents
a function call between two groups. Most groups contain only
functions from libc because it is a large library with multiple sub-
modules. For three of the four libraries, we can generate at least one
group where all functions in the group belong to the same library.
The right side of that figure shows the intra-group consistency
when we zoom into the 1ibhydrogen group and decompose it into
smaller sub-groups. Manual inspection of the sub-groups shows
that the functions match well with their corresponding semantics.
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Figure 6: A single group of libc functions clustered by GN
versus how the same functions were clustered by the Louvain
Community Detection algorithm. Each point is a function.

To illustrate the differences in outcomes, Figure 6 shows a group
identified by our approach compared to how the Louvain Com-
munity Detection algorithm grouped the corresponding functions.
Louvain splits the related functions across multiple groups. Some
groups are small, while others are large groups that contain unre-
lated functions (e.g., red elements in Group 1) coming from source
files in different sub-directories.

Overall, we posit that by using groupings with less noise, third-
party license detectors and vulnerability scanners [50, 64] could
become better at identifying statically linked libraries. This would
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likely be the case for LibDB [50], which creates function embed-
dings [60] from call graphs and then uses a nearest neighbor algo-
rithm to select the best match (among an indexed set of libraries)
given an input set of clusters decomposed from an unknown bi-
nary. Clusters that have many unrelated functions generate low
similarity scores, thereby inducing false negatives.

6 DISCUSSION

Our case studies provide an exposition of the diverse security im-
plications arising from compiler optimizations. Our research lays a
foundation for effectively utilizing compiler provenance informa-
tion to enhance numerous security tasks. In particular, developers
stand to benefit from a practical tool for identifying and rectifying
DSE in privacy-sensitive code. Given the prevalence of potential
DSE vulnerabilities in everyday applications, end-users can leverage
the provenance model to evaluate potential risks in mission-critical
binaries, thus further strengthening system security.

Regarding ROP gadgets, establishing a correlation between gad-
gets and passes facilitates a streamlined approach to identifying
problematic sections of code. Developers can thus focus on targeted
fixes only for those sections without being bogged down by the
intricacies of low-level gadget finding. In a similar vein, end-users
can incorporate a provenance report as part of a software bill of
materials (SBOM) to assess risks based on these correlations. Im-
portantly, given that compiler provenance can be obtained solely
from binaries, such SBOMs can be generated without relying on
vendor support. Moreover, we envision that malicious rich header
modifications and binary decomposition, augmented by compiler
provenance, can be building blocks for empowering end-users with
tools to generate or validate SBOMs from the bottom up.

We hope that the research presented here will serve as a source
of inspiration for others to explore paths that can be further in-
vestigated, both in terms of refining techniques and identifying
new use cases to bolster security tasks. For example, it is clear that
the precision of the DSE classifier presented in Section 3 would
need to be augmented prior to widespread adoption. One direc-
tion is to enhance the classifier with supplementary information
obtained through binary decomposition. We anticipate that this
approach could improve not only DSE detection but also other com-
piler provenance tasks. Another possible refinement is improving
the granularity of rich header analysis with binary decomposition.
With clusters of functions within a binary, the Rich header verifi-
cation technique presented here could verify each submodule of a
binary, further improving the verification accuracy.

7 LIMITATIONS

Our findings are specific to version 14 of the widely popular LLVM
compiler. That said, given that we extract the list of passes applied
to each compilation unit by instrumenting the LegacyPassManager
and deduce information regarding removed store instructions by
instrumenting the Dead Store Elimination pass, we are confi-
dent that with additional engineering effort these modifications
can be ported to other versions of LLVM. We leave the design and
implementation of models that support multiple versions of LLVM,
as well as different compilers (e.g., GCC), as an open problem. Sim-
ilarly, while our study only evaluates X86-64 binaries, we note
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that most of the optimization passes that we examine are machine-
independent passes that operate at the IR level. Hence, our findings
should apply to other architectures as well.

Lastly, we do not cover all types of compiler-induced vulnera-
bilities. Additionally, as modern compilers are continuously devel-
oping, our models must be periodically re-trained. Nevertheless,
we believe our selection of compiler-induced vulnerabilities aptly
demonstrates the severity of compiler-induced security issues ob-
served in the wild. We leave the analysis of other vulnerability
types (e.g., constant time violations or those related to orthogonal
specification issues) for future work.

8 CONCLUSIONS

We present a large-scale evaluation of fine-grained compiler config-
uration information recovery and demonstrate three downstream
tasks that can benefit from using the recovered artifacts. Overall,
our evaluation shows that one can reliably detect the presence of
certain passes applied at the level of functions. Our analysis of
compiler-induced vulnerabilities on real-world programs reveals
that C/C++ projects continue to suffer from persistent state vio-
lation caused by the dead store elimination optimization and an
increased amount of code reuse gadgets due to optimizations. These
violations arise because of implicit specification modifications that
do not align with the programmers’ intent. The case for Rust is
more encouraging. Lastly, we present approaches for forensic tasks,
including Windows Rich header verification and improving binary
decomposition.

9 AVAILABILITY

To promote research in this area, our extensions and data are avail-
able at https://github.com/zeropointdynamics/passtell.
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Figure 7: Changes in the number of gadgets that increment
a register in binaries in Dataset II after the Control Flow
Optimizer pass. The X-axis shows the density of the gadgets.
The Y-axis shows the amount of gadgets. Each dot is a binary.

A COMPILER PASS PREDICTION USING
DIFFERENT MODELS
Optimization Pass QDA NN | LSVM | NB LGBM
Dead Store Elimination 6.5 47.8 43.6 | 28.1 52.0
Aggressive Dead Code 12 315 233 | 37.0 39.9
Elimination
Bit-Tracking Dead Code g3, 55, 479 | 407 58.5
Elimination
Remove Dead Machine 982 743 724 | 624 80.1
Instructions
Early Machine Loop
Invariant Code Motion 60.3  89.9 87.8 | 51.9 89.7
Machine Loop Invariant
Code Motion 7.4 58.9 59.7 | 46.6 69.8
Loop Invariant Code 479 836 | 809 | 427 863
Motion
Machine Common
Subexpression 36.9 81.1 76.6 | 36.8 81.7
Elimination
Early CSE 71.6 87.4 844 | 579 88.7
Early CSE w/
MemorySSA 52.5 69.8 68.1 | 47.4 75.2
Loop Strength Reduction 402 90.4 90.0 | 37.4 91.4
Peephole Optimizations 704  93.1 94.6 | 713 94.4
SROA 97.8  99.5 99.5 | 95.2 99.3
Control Flow Optimizer 878  96.8 97.5 | 85.6 97.7

Table 7: Compiler pass prediction result in F-1 score (%) using
different machine learning models. QDA: Quadratic Discrim-
inant Analysis; NN: Neural Network; LS: Linear SVM; NB:
Naive Bayes; LGBM: LightGBM

To evaluate the performance of different machine learning mod-
els, we tested approaches based on Quadratic Discriminant Analysis
(QDA), Neural Networks, Linear SVMs, and Naive Bayes. We use
the same dataset and experimental setup as in Section 3.2, with
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Pass Feature Feature
Score
Dead Store mul 70
Elimination cmp | cmove 65
test %ri3b %ri3b 60
Aggressive jne #TARGET# | mov #MEM# %rbp %rax 69
Dead Code idiv 69
Elimination pand 60
Bit-Tracking mov #MEM# %rsp %rax | mov %rax %rax 66
Dead Code movzbl %cl %eax 52
Elimination mov #MEM# %rip %ri5 46
Remove Dead cmove | xor 87
Machine xor %edi %edi 82
Instructions jmp #TARGET# | lea #MEM# %rip %rdi 73
Early Machine START test %rsi %rsi 117
Loop Invariant START vcvtsd2ss %xmm@ %xmm@ %xmm1 108
Code Motion START test %edx %edx 99
Machine Loop mov #IMM# %edi | mov #IMM# %esi 77
Invariant Code mov %rdx %ri15 65
Motion mov %r12 %rdi | xor %esi %esi 59
Loop Invariant rilw 118
Code Motion END cmp #MEM# %rbx %edx 104
fcmovbe 99
Machine Common | punpckhqgdq 103
Subexpression call #TARGET# | mov #IMM# %rdx 89
Elimination mov #MEM# %rbp %ri10 74
Early CSE pop %ri3 83
cmp #IMM# %ecx | mov %al #MEM# %rbp 71
mov #MEM# %rbx %r8 68
Early CSE w/ mov #MEM# %rax %ri3 65
MemorySSA jle | test 61
movapd | mov 59
Loop Strength mov #MEM# %ri13 %rax 119
Reduction sub %eax %ecx 105
mov | movw 103
Peephole movsd 133
Optimizations mov %edx %ecx 102
mov %ri15 %rsi 82
SROA START mov #MEM# %rsi %r8 121
START mov %r9 %r1@ 118
fsub 109
Control Flow mov #MEM# %rip %rbp 144
Optimizer mov #IMM# %eax 138
lea #MEM# %rip %r8 | mov #IMM# %al 131

Table 8: Top 3 features for each compiler pass listed in Table 3

Corpus I and III as the training set and Corpus II as the testing set.
We computed the average across 10 runs for each model. Table 7
shows the F-1 scores of each model for the passes with security-
related implications. Since LightGBM performed the best on 9 of
the 14 passes it was selected as our classifier of choice. The results
also show that an ensemble of techniques could offer a viable path
for improving overall performance.

B FEATURE IMPORTANCE OF
SECURITY-RELATED PASSES

Table 8 lists the top three features for the passes listed in Table 3 and

their feature importance. Higher feature importance score means

that the feature is more definitive for the classifier to make the

decision. Features that begin with START and END are the first and

last instruction of a function, respectively.

C IMPACT OF PASSES ON GADGET
AVAILABILITY

An example of another pass that increases gadget availability is
shown in Figure 7. Here, when the compiler runs the 79th function
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Consistent Ave, Median

Threshold | Groups G Group  Group
roups Size Size

0.1-0.3 9 3 233 3
0.4 91 77 8.92 5
0.5 70 56 9.51 4
0.6 86 72 9.54 5
0.7 180 114 6.25 3
0.8 377 187 3.68 2
0.9 502 201 2.94 3

Table 9: GN algorithm with different thresholds. The thresh-
old selected in Section 5.2.1 is highlighted.

pass, which is the Control Flow Optimizer pass for most pro-
grams, the number of gadgets that increment a register increased
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by 3.59 on average. Figure 7 shows the changes of the amount of
gadgets that increment a register and the density of this type of
gadgets. While a large portion of binaries see no change in the num-
ber of register incrementing gadgets, many binaries show increase
in both the number of gadgets and the density of the gadgets.

D BINARY DECOMPOSITION USING
DIFFERENT THRESHOLDS

Table 9 lists the decomposition statistics using our modified GN

algorithm with different thresholds. We selected the decomposition

result at threshold 0.6 because the result has the highest average
and median group size as well as a high ratio of consistent groups.
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