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Abstract. Antivirus scanners are designed to detect malware and, to a lesser ex-
tent, to label detections based on a family association. The labeling provided
by AV vendors has many applications such as guiding efforts of disinfection
and countermeasures, intelligence gathering, and attack attribution, among oth-
ers. Furthermore, researchers rely on AV labels to establish a baseline of ground
truth to compare their detection and classification algorithms. This is done de-
spite many papers pointing out the subtle problem of relying on AV labels. How-
ever, the literature lacks any systematic study on validating the performance of
antivirus scanners, and the reliability of those labels or detection.
In this paper, we set out to answer several questions concerning the detection rate,
correctness of labels, and consistency of detection of AV scanners. Equipped with
more than 12,000 malware samples of 11 malware families that are manually in-
spected and labeled, we pose the following questions. How do antivirus vendors
perform relatively on them? How correct are the labels given by those vendors?
How consistent are antivirus vendors among each other? We answer those ques-
tions unveiling many interesting results, and invite the community to challenge
assumptions about relying on antivirus scans and labels as a ground truth for mal-
ware analysis and classification. Finally, we stress several research directions that
may help addressing the problem.
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1 Introduction

Antivirus (AV) companies continuously evolve to improve their products, which protect
users and businesses from malicious software (malware) threats. AV products provide
two major functionalities: detection, the main focus of many AV companies, and label-
ing, a by-product of the detection with many important applications [27]. Labeling is
an important feature to various parties: AV vendors, information security profession-
als, and the academic community. Labeling allows AV vendors to filter known mal-
ware and focus on new malware families or variants of familiar families with known
remedies, and enables AV vendors to track a malware family and its evolution—thus
allowing them to proactively create and deploy disinfection mechanisms of emerging
threats [25]. In security operations, which are done in many enterprises, information
security practitioners use malware labels to mitigate the attacks against their organi-
zation by deploying the proper disinfection mechanisms and providing the related risk
assessment. Law enforcement agencies rely on labels for attack attribution. Finally,
researchers have benefited from detection and labeling of malware provided by AV
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vendors in establishing baselines to compare their malware analysis and classification
designs against [6, 7, 16, 30, 32, 35, 39, 42].
I Antivirus Labeling and Inconsistency. The AV market is very diverse and pro-
vides much room for competition, allowing vendors to compete for a share of the mar-
ket [28]. Despite various benefits [11], the diversity of AV software vendors creates a
lot of disorganization due to the lack of standards and (incentives for) information shar-
ing, malware family naming, and transparency. Each AV company has its own way of
naming malware families [20]. Analysts, who study new malware samples, by utiliz-
ing artifacts within the malware to derive and give them names, usually create Malware
names. Some malware families are so popular in underground forums, like SpyEye [23],
Zeus [17], ZeroAccess [1], DirtJumper [5], etc., and AV vendors use those names given
in the underground market. Other smaller and less prominent families are named inde-
pendently by each AV company. For example, targeted malware [38]—stealthy and less
popular—is tracked independently by AV vendors resulting in different naming.

The diversity of the market with the multi-stakeholder model is not the only cause
of labeling problems. The problems can happen within the same vendor when an engine
detects the same malware family with more than one label due to evasion techniques
and evolution patterns over time. For example, a malware could be detected using a
static signature, then detected later heuristically using a generic malicious behavior
(due to polymorphism). In such case, the AV vendor will give it another label creating
inconsistency within the labeling schema. These inconsistencies and shortcomings may
impact applications that use AV labeling.
I Inconsistencies Create Inefficiencies. In light of the shortcomings highlighted
above, the use of AV labels for validating malware classification research has some
pitfalls. Malware samples collected by researchers are often not represented in their en-
tirety within a single malware scanning engine. Accordingly, researchers are forced to
use multiple engines to cover their datasets, thus forced to deal with inconsistencies in
labeling and naming conventions. Researchers resolve the inconsistencies by translat-
ing names used across various vendors. However, given that different AV vendors may
use different names to mean and refer to the same family, this translation effort is never
easy nor complete. Even worse, different families may have the same name in different
AV detections—for example “generic” and “trojan” are used by many vendors as an
umbrella to label [25], sometimes making such translation impossible.

Furthermore, the detection and labeling inconsistencies create inefficiencies in the
industry. For example, if a user of an AV engine detects a malware with a certain la-
bel, the user might have a mitigation plan for that malware family. On the other hand,
another AV vendor may detect the same malware and give it a different label that is un-
familiar to the user, thus the user will not be able to use an existing mitigation plan for
the same malware. This inefficiency can cost organizations a lot (directly or indirectly)
and damage their reputation. While companies are secretive on that matter, some recent
incidents include highlight the cost of compromise [14, 26, 36].
I An “Elephant in the Room”. Sadly, while we are not the first to observe those
inefficiencies in AV labeling systems [6, 7, 34], the community so far spent so little
time systematically understanding them, let alone quantifying the inefficiencies and
providing solutions to address them. Some of the work that pointed out the problem
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with AV labels used the same labels for validating algorithms by establishing a ground
truth and a baseline [7, 34]. A great setback to the community’s effort in pursuing this
obvious and crucial problem is the lack of a better ground-truth than that provided by
the AV scanners, a limitation we address in this work by relying on more than 12, 000
highly-accurate and manually vetted malware samples (more details in §3.1). We obtain
those samples from real-world information security operations (§3.2), where vetting and
highly accurate techniques for malware family labeling are employed as a service.

In this work we are motivated by the lack of a systematic study on understanding the
inefficiencies of AV scanners for malware labeling and detections. Previous studies on
the topic are sketchy, and are motivated by the need of making sense of provided labels
to malware samples [31], but not testing the correctness of those labels or the complete-
ness of the detections provided by different scanners. Accordingly, we develop metrics
to evaluate the completeness, correctness, consistency, and coverage (defined in §2),
and use them to evaluate the performance of various scanners. Our measurement study
does not trigger active scans, but rather depends on querying the historical detections
provided by each AV engine. While AV scanners’ first priority is a high detection rate,
we show that several scanners have low detection rates on our dataset. We show those
findings by demonstrating that any sample we test exists in at least one AV scanner,
thus one can obtain full detection of the tested samples using multiple vendors.
I Contribution. The contribution of this study is twofold. We provide metrics for eval-
uating AV detections and labeling systems. Second, we use manually vetted dataset for
evaluating the detections and labeling of large number of AV engines using the proposed
metrics. As a complementary contribution, we emphasize several research directions to
address the issues raised in this study. To the best of our knowledge, there is no prior
systematic work that explores this direction at the same level of rigor we follow in this
paper (for the related work, see §6). Notice that we disclaim any novelty in pointing
out the problem. In fact, there has been several works that pointed out problems with
AV labels [6, 7], however those works did not systematically and quantitatively study
the performance of AV scanners and the accuracy of their labels. This, as mentioned
before, is in part because of the lack of datasets with solid ground truth of their label.
I Shortcomings. Our study has many shortcomings, and does not try to answer many
questions that are either out of its scope or beyond our resources and capabilities. First
of all, our study cannot be used as a generalization on how AV vendors would perform
against each other in other contexts, because we do not use every sample in every given
AV scanner. Similarly, the same generalization cannot be used over malware families,
since we did not use all samples known by the AV scanners. Our study is, however,
meaningful in answering the context’s questions it poses for 12,000 malware samples
that belong to various families. Furthermore, our study goes beyond the best known
work in the literature on the problem by not relying on AV-provided vendors as refer-
ence for comparing other vendors (further details are in §6).

Another shortcoming of our study is the representation of families and their di-
versity. Families we studied fall under three classes: commercial DDoS, targeted, and
mass-market families. While we believe that the 11 families we studied are fairly large
to draw some conclusions, they are not representative to the large population of thou-
sands of families a typical AV vendor would have, and conclusions cannot be gener-
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alized. For example, our study does not consider classification of “nuisanceware”, yet
another class of scam malware via unethical marketing techniques. AV scanners are
shown in the literature to perform worse for this class of malware [19], and one may de-
duce that this class would have also a worse classification and labeling rates than other
families, although we were not able to concretely show that for the lack of data.
I Organization. The organization of the rest of this paper is as follows. In section 2
we review several metrics for the evaluation of AV scanners. In section 3 we provide an
overview of the dataset we used in this study and the method we use for obtaining it. In
section 4 we review the measurements and findings of this study. In section 5 we dis-
cuss implications of the findings and remedies, emphasizing several open directions for
investigation. In section 6 we review the related work, followed by concluding remarks
and the future work in section 7.

2 Evaluation Metrics

For formalizing the evaluation of the AV scanners, we assume a reference dataset Di

(where 1 ≤ i ≤ Ω forΩ tested datasets).Di consists of∆i samples of the same ground-
truth label `i. We assume a set of scanners A of size Σ. Furthermore, we assume that
each scanner (namely, aj in A where 1 ≤ j ≤ Σ) is capable of providing detection
results for∆′

ij ≤ ∆i samples, denoted as S ′ij ⊆ Di (collectively denoted as S ′i). Among
those detections, we assume that the scanner aj is capable of correctly labeling ∆′′

ij ≤
∆′

ij samples with the label `i. We denote those correctly labeled samples by aj as
S ′′ij ⊆ S ′ij (collectively denoted as S ′′j ). In this work we use several evaluation metrics:
the completeness, correctness, consistency, and coverage, which we define as follows.
I Completeness. For a given reference dataset, we compute the completeness score
(commonly known as detection rate) of an AV scanner as the number detections re-
turned by the scanner normalized by the size of the dataset. This is, for Di, aj , ∆i, and
∆′

ij that we defined earlier, we compute the completeness score as ∆′
ij/∆i.

I Correctness. For a given reference dataset, we compute the correctness score of a
scanner as the number of detections returned by the scanner with the correct label as
the reference dataset normalized by the size of the dataset. This is, for Di, aj , ∆i, and
∆′′

ij we defined earlier, we compute the correctness score as ∆′′
ij/∆i.

I Consistency. The consistency measures the extent to which different scanners agree
in their detection and labeling of malware samples. As such, we define two versions
of the score, depending on the metric used for inclusion of samples: completeness or
correctness. We use the Jaccard index to measure this agreement in both cases. For the
completeness-based consistency, the consistency is defined as the size of the intersec-
tion normalized by the size of the union of sample sets detected by both of the two
scanners. Using the notation we defined above, and without losing generality, we define
the completeness-based consistency of aj and ar as |S ′ij ∩ S ′ir|/|S ′ij ∪ S ′ir|. Similarly,
we define the correctness-based consistency as |S ′′ij ∩ S ′′ir|/|S ′′ij ∪ S ′′ir|.
I Coverage. We define the coverage as the minimal number of AV scanners that we
need to utilize so that the size of the detected (or correctly labeled) samples is maximal.
Alternatively, we view the coverage for a number of AV scanners as the maximal ratio
of collectively detected (or correctly labeled) samples by those scanners normalized by
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the total number of samples scanned by them. Ideally, we want to find the minimal
number of scanners k, where Ak = {a1, . . . , ak}, which we need to use so that the
completeness (or the correctness) score is 1. This is done by repetitively selecting the
AV scanner that has the most number of samples not included so far in the result until
all samples are covered.

Related to both completeness and correctness scores are the number of labels pro-
vided by each AV scanner, and the number of malware samples labeled under the largest
label. Indeed, one can even extend the latter metric to include the distribution on the size
of all labels provided by an AV scanner for each malware family. We compute those de-
rived metrics for each scanner, label, and malware family.

3 Datasets, Labels, and Scans

3.1 Dataset

For the evaluation of different AV vendors based on a common ground of comparison,
we use a multitude of malware samples. Namely, we use more than 12,000 malware
samples that belong to 11 distinct malware families. Those families include targeted
malware, which are oftentimes low-key and less populated in antivirus scanners, DDoS
malware, rootkits, and trojans that are more popular and well populated in antivirus
scanners and repositories. We use families, such as Zeus, with leaked codes that are
well understood in the industry. The malware families used in the study are shown
in Table 1 with the number of samples that belong to each malware family, and the
corresponding brief description. Finally, we emphasize that our dataset contains only
malware, and no benign binaries, thus we do not study false positives for detection in
the rest of this work. In the following, we elaborate on each of those families.

– Zeus: Zeus is a banking Trojan that targets the financial sector by stealing creden-
tials from infected victims. The malware steals credentials by hooking Windows API
functions which intercepts communication between clients and bank’s website and
modifies the returning results to hide its activities.

– Avzhan: is a DDoS botnet, reported by Arbor Networks in their DDoS and security
reports in September 2010 [3]. The family is closely related to the IMDDoS [9],
a Chinese process-based botnet announced by Damballa around September 2010.
Similar to IMDDoS, Avzhan is used as a commercial botnet that can be hired (as
a hit man) to launch DDoS attacks against targets of interest. The owners of the
botnet claim on their website that the botnet can be used only against non-legitimate
websites, such as gambling sites.

– Darkness: (Optima) is available commercially and developed by Russian criminals
to launch DDoS, steal credentials and use infected hosts for launching traffic tunnel-
ing attacks (uses infected zombies as potential proxy servers). The original botnet
was released in 2009, and as of end of 2011 it is in the 10th generation [10].

– DDoSer: Ddoser, also know as Blackenergy, is a DDoS malware that is capable of
carrying out HTTP DDoS attacks. This malware can target more than 1 IP address
per DNS record, which makes it different than the other DDoS tools. It was reported
on by Arbor networks and analyzed in 2007 [12].
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– JKDDoS, a DDoS malware family that is targeted towards the mining industry [4].
The first generation of the malware family was observed as early as September of
2009, and was reported first by Arbor DDoS and security reports in March 2011.

– N0ise: a DDoS tool with extra functionalities like stealing credentials and download-
ing and executing other malware. The main use of n0ise is recruiting other bots to
DDoS a victim using methods like HTTP, UDP, and ICMP flood [21].

– ShadyRat: used to steal sensitive information like trade secrets, patent technologies,
and internal documents. The malware employs a stealthy technique when communi-
cating with the C2 by using a combination of encrypted HTML comments in com-
promised pages or steganography in images uploaded to a website [22]

– DNSCalc: is a targeted malware that uses responses from the DNS request to cal-
culate the IP address and port number it should communicate on, hence the name
DNSCalc. The malware steals sensitive information and targets research sector [13].

– Lurid: a targeted malware family, where three hundred attacks launched by this mal-
ware family were targeted towards 1465 victims, and were persistent via monitoring
using 15 domain names and 10 active IP addresses. While the attacks are targeted
towards US government and non-government organization (NGOs), there seems to
be no relationship between the targets indicating its commercial use [40]

– Getkys: (Sykipot) is a single-stage Trojan that runs and injects itself into three tar-
geted processes: outlook.exe, iexplorer.exe and firefox.exe. Getkys communicates via
HTTP requests and uses two unique and identifiable URL formats like the string
“getkys.” The malware targets aerospace, defense, and think tank organizations [2].

– ZAccess: also known as ZeroAccess, is a rootkit-based Trojan and is mainly used as
an enabler for other malicious activities on the infected hosts (following a pay-per-
click advertising model). It can be used to download other malware samples, open
backdoor on the infected hosts, etc. The family was reported by Symantec in July
2011, and infects most versions on the windows operating system [1]

3.2 Samples Analysis, Vetting, and Labeling

Analysts have identified each malware sample in our dataset manually over a period of
time in a service that requires reverse engineering and manual assignment and vetting
of the assigned labels. Our dataset consists of variety of families and a large number
of total samples, which enables us to derive meaningful insights into the problem at
hand. Furthermore, compared to the prior literature that relies on tens to hundreds of
thousands of malware samples, our dataset is small enough to enable manual vetting
and manual label assignment. For the data we use in the study, we use malware samples
accumulated over a period of 18 months (mid 2011 to 2013). This gives the AV vendors
an advantage and might overestimate their performance compared to more emerging or
advanced persistent threat (APT)—or greyware/spyware, where AV vendors are known
to perform worse [19].

To identify the family to which a malware sample belongs, an analyst runs the mal-
ware sample through static analysis, dynamic analysis, and context (customer feedback)
analysis. For the static analysis, artifacts like file name, size, hashes, magic literals,
compression artifacts, date, source, author, file type, portable executable (PE) header,
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Table 1. Malware families used in this study, their size, and description. All scans done on those
malware samples are in May 2013. (t) stands for targeted malware families. Ddoser is also known
as BlackEnergy while Darkness is known as Optima.

Malware family # description

Avzhan 3458 Commercial DDoS bot
Darkness 1878 Commercial DDoS bot
Ddoser 502 Commercial DDoS bot
Jkddos 333 Commercial DDoS Bot
N0ise 431 Commercial DDoS Bot
ShadyRAT 1287 (t) targeted gov and corps
DNSCalc 403 (t) targeted US defense companies
Lurid 399 (t) initially targeted NGOs
Getkys 953 (t) targets medical sector
ZeroAccess 568 Rootkit, monetized by click-fraud
Zeus 1975 Banking, targets credentials

sections, imports, import hash, and resources, as well as compiler artifacts, are used.
For the dynamic analysis, we run the sample in a virtual environment (or on the bare
metal if needed) and collect indicators like file system artifacts, memory artifacts, reg-
istry artifacts, and network artifacts—more details on those artifacts and indicators are
in [24] and [41]. An analyst based on the collective nature of those indicators, and by
utilizing customer input and private security community consensus and memory signa-
tures, provides labeling. For naming, we use what is collectively accepted in the AV
community of names on samples that exhibit the behavior and use those indicators. For
the evaluation of our data set we used VirusTotal signatures for 48 AV engines to test
several evaluation measures. We discarded all engines that provided scans for less than
10% of our dataset.

Given that malware samples are not labeled using the same convention by all AV
vendors and scanners, we rely on experts knowledge of the samples and the names given
by those vendors to identify a common ground for names. In total, we used industry,
community, and malware author given labels as correct labels for each malware family
(details are in §4). The only exception was the targeted malware, for which we used
labels given by the AV community. For example, zeus is often time named zbot in
the industry, and is given a hierarchical suffix that indicates generational differences
(or sample sequencing using signature-based techniques; e.g., zbot!gen[0-72] given by
Symantec using heuristics). For that, we get rid of the suffix, and only use the stem
of the name to unify the multitude of names given by the same vendor for various
samples. Similarly, we utilize a similar technique for across-vendor label unification.
When a family is called different names by different vendors (e.g., DNSCalc is named
cosmu and ldpinch by different vendors), we use both names as a correct label.

Note that DDoS is not overrepresented in our data set, but the families represented
belonged to the most accurately vetted ones. We have several other sets but we did not
use them in this study because they did not have well known community labels that we
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can map to AV labels, hence they were left out. For those families and samples we lifted
out, and by looking at the labels from AV, they did not converge on a clear label that we
could use, and instead they resulted mostly in generic and heuristic labels.

3.3 VirusTotal

VirusTotal is a multi-engine AV scanner that accepts submissions by users and scans the
sample with those engines. The results from VirusTotal have much useful information,
but for our case we only use the AV vendor name and their detection label. VirusTotal
will provide more AV results (with respect to both the quantity and quality) when a
malware sample has been submitted in the past. The reason for this is that AV engines
will provide an updated signature for malware that is not previously detected by their
engines but was detected by other engines. Hence, malware samples that have been
submitted multiple times for a long period of time will have better detection rates, and
labels given to them by AV vendors are likely to be consistent, correct, and complete.
We run our dataset through VirusTotal and obtain detections and labels of the detections
for every sample. We use the most recent detection and label given by VirusTotal.

Finally, we emphasize the difference between vendor and scanner, since some ven-
dors have multiple scanners—as a result of multiple products—in VirusTotal. For exam-
ple, we note that NOD32 and McAfee have two scanners in the reported results. When
there is more than one scanner per vendor, we use the one with the highest results to
report on the performance on that vendor. We also emphasize the method described in
section 3.2 for identifying malware samples by a family name.

4 Measurements and Findings

4.1 Completeness (Detection Rate)

For completeness, and as explained above, we use the ratio of detections for every
AV scanner and for each of the families studied (the ratio is computed over the total
number of malware samples in each family). For example, an AV engine Ai that has
950 detections out of a 1,000 sample dataset would have a 0.95 completeness regardless
to what labels that are returned by the named AV.

zeus zaccess lurid n0ise oldcarp jkddos dnscalc ddoser darkness bfox avzhan
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Fig. 1. Number of scanners that detected each sample in our dataset grouped by family.



AV-Meter: An Evaluation of Antivirus Scans and Labels 9

I Samples populated in scanners. We consider the number of AV scanners that detect
each sample, and group them by family. Figure 1 shows the various families used in this
paper, and a box plot for the number of the scanners that detected each sample in each
family. From this figure we observe that with the exception of two families (darkness
and oldcarp; aka Getkys), the majority of samples are detected by more than half of
the scanners. Furthermore, in relation with the rest of figures in this section, this figure
shows that the majority of families contribute to the high detection rate.
I Overall completeness scores. Figure 2 shows the completeness scores of each of
the AV scanners listed on the x-axis, for the 11 families in Table 1. Each of the boxes in
the boxplot corresponds to the completeness distribution of the given scanner: the me-
dian of the completeness for the AV scanner over the 11 families is marked as the thick
middle line, the edges of the box are the first and third quartiles, and the boundaries of
each plot are the minimum and maximum with the outliers below 5% and above 95% of
the population distribution. On this figure, we make the following remarks and findings.
First of all, we notice that the maximum completeness provided by any AV scanner for
any of the studied malware families is 0.997 (99.7% detection rate). We later show that
all samples are present in a set of independent scanners, when considered combined,
suggesting that those malware samples are not obsolete or limited or present only in
our malware repository. Second, we note that on average the completeness of the scan-
ners with respect to the total number of malware families considered in the study is
only 0.591 (a score not shown in the figure; which means only 59.1% detection rate).
Furthermore, the same figure shows that even with the well performing scanners on
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Fig. 2. A box plot of the completeness scores of antivirus scanners used in the study against the
11 malware families shown in Table 1. The y-axis is on the linear scale, of 0-1.

the majority of samples and families, there are always families that are missed by the
majority of scanners—Darkness and Oldcarp in Figure 1, and are statistically consid-
ered outliers with respect to the rest of the scores provided by the same scanners for
other families (e.g., scanners on the right side of Sophos, which has a mean and median
completeness scores of 0.7 and 0.8 respectively). Interestingly, we find that those out-
liers are not the same outlier across all scanners, suggesting that an information-sharing
paradigm, if implemented, would help improve the completeness score for those fam-
ilies. Finally, we notice that popular AV scanners, such as those widely used in the
research community for evaluating the performance of machine learning based label
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techniques, provide mixed results: examples include VirusBuster, ClamAV, Symantec,
Microsoft, and McAfee, which represent a wide range of detection scores. Note that
those scanners are also major players in the AV ecosystem [28].
I Completeness vs. diversity of labels. Does the completeness as a score give a con-
crete and accurate insight into the performance of AV scanners? A simple answer to
the question is negative. The measure, as defined earlier, tells how rich is an AV scan-
ner with respect to the historical performance of the scanner but does not capture any
meaning of accuracy. The accuracy of the AV scanners is determined by the type of la-
bels assigned to each family, and whether those labels match the ground truth assigned
by analysts upon manual inspection—which is captured by the correctness score. How-
ever, related to the completeness is the number of labels each AV scanner generates and
the diversity (or perhaps the confusion) vector they add to the evaluation and use of AV
scanners. For each AV vendor, we find the number of labels it assigns to each family.
We then represent the number of labels over the various families as a boxplot (described
above) and plot the results in Figure 3. The figure shows two interesting trends. First,
while it is clear that no scanner with a non-empty detection set for the given family has
a single label for all malware families detected by the scanner, the number of labels
assigned by the scanner is always large. For example, the average number of labels as-
signed to a malware family by any scanner is 139, while the median number of labels is
69, which creates a great source of confusion. We further notice that one of the scanners
(McAfee) had 2248 labels for the Avzhan malware family, which gives more than one
label for every 2 samples. While we cannot statistically establish a confidence for the
correlation of 0.24 between the number of labels and completeness—nor we can reject
that as well— we observe some positive trend consistent for some of the scanners by
visually comparing figures 3 and 2.
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Fig. 3. A box plot of the number of labels assigned by the antivirus scanners used in the study for
their detection of the malware families shown in Table 1. The y-axis is truncated (originally goes
to 2248; smaller values are one indicator of better performance of an antivirus scanner.)

Completeness vs. largest label population size: Finally, for a deeper understanding
of how the number of labels contributes to the completeness, we study the ratio of
malware samples under the label with the largest population for every scanner. The
results are shown in Figure 4. We see that while the average largest label among all we
studied covers only 20% of the malware samples for any given scanner, some scanners,
even with good completeness scores (e.g., Norman, Ikarus, and Avast, among others),
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Fig. 4. A box plot of the size of the largest label of the given antivirus scanner for the various
malware families shown in Table 1.

also provides a single label for the majority of detections (for 96.7% of the samples in
Norman, for example). However, looking closer into the label given by the scanner, we
find that it is too generic, and describes the behavior rather than the name known for the
malware family; Trojan.Win32.ServStart vs Avzhan.

4.2 Correctness

Because of the large number of variables involved in the correctness, we limit our at-
tention to two analysis aspects: general trends with a select AV vendor over all families,
and then we demonstrate the correctness of two families for all vendors.

Family-based Trends We start the first part by iterating over each of the malware
families, and group their behavior into three categories: families that AV scanners failed
to label, labeled correctly, or labeled under other popular (unique) names.
I Failed to label. We observe that scanners totally mislabeled N0ise and Getkys.
Among the generic labels of the first family, *krypt* and variants are used, where
GData, BitDefend, and F-Secure provided coverage of 51.7%, 51.7%, and 50.8%, re-
spectively. As for N0ise, Microsoft labeled it Pontoeb for 49% of the samples. We ob-
serve that Pontoeb shares the same functionality with N0ise. For both families, and in
all of the labels provided by scanners, the most popular ones are too generic, including
“trojan”, “virus”, “unclassified”, and nothing stands to correspond to functionality.
I Labeled under known names. Out of 3458 samples of Avzhan, the scanner AVG
had the only meaningful label, which is DDoS.ac. Out of 3345 detections, 1331 were
labeled with the meaningful label, corresponding to only about 39% of the samples.
We notice that the rest of the AV scanners provide generic labels describing some of its
behavior, like ServStart, which refers to the fact that the malware family is installed as a
service. This lower result is observed despite the higher detection as observed in the AV
scanners’ completeness performance on the family; an average of 71.5% and a median
of 84.25%. We note that a generic label associated with the family, like *servicestart*
(indicating the way of installation and operation of the sample) provides a collective
correctness of label of about 62.7%, 47.5%, 46.6%, 41.8%, and 41.7% with Ikarus,
Avast, NOD32, Emsisoft, and QuickHeal, respectively.
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Each of Symantec, Microsoft, and PCTools detected Jkddos close to 98% of the
time and labeled it correctly (as jackydos or jukbot, two popular names for the family)
for 86.8%, 85.3%, and 80.3% of the time (Sophos followed with 42.3%). This correct-
ness of labeling provides the highest performance among all families studied in this
paper. The rest of the AV scanners labeled it either incorrectly or too generic, with the
correct labels fewer than 5% of the time. As for DDoSer (also blackenergy), DrWeb
provided close to 90% of detection, but only 64.1% of the total number of samples are
labeled with the correct label, followed by 23.7% and 6.8% of correct labeling provided
by Microsoft and Rising, and the rest of the scanners provided either incorrect or too
generic labels like Trojan, generic, and autorun, among others.

ZeroAccess is labeled widely by the labels ZAccess, 0Acess, Sirefef, and Alureon,
all of which are specific labels to the family. We find that while the detection rate of the
family goes as high as 98%, the best correct labels are only 38.6% with Microsoft (other
noteworthy scanners are Ikarus, Emsisoft, Kaspersky, and NOD32, with correctness
ranging from 35.9% to 28.5%). Finally, Zeus is oftentimes labeled as Zbot, and we
notice that while completeness score of 98% is obtained, only about 73.9% of the time
the label is given correctly in a scanner (McAfee). Other well-performing scanners
include Microsoft, Kaspersky, and AhnLab, providing correctness of 72.7%, 54.2%,
and 53%, respectively.
I Behavior-based labeling. Lurid is labeled as Meciv, pucedoor, and Samkams by
various scanners. Both of the first and second labels are for malware that drops its files
on the system with names such as OfficeUpdate.exe and creates a service name like
WmdmPmSp, while the last label is for worms with backdoor capabilities. This mal-
ware is labeled correctly based on the behavior, but not the name that is given to it
originally in the industry. We notice that the top five scanners with the first and second
labels are ESET-NOD32, Microsoft, Commtouch, F-port, and Rising, with correctness
scores of 68.4%, 51.6%, 33.6%, 33.1%, and 31.1% respectively. When adding the third
label, the top scanners include Symantec and PCTools, with 44.1% and 41.9%, respec-
tively, at the third and fourth spots with the previous percent of top performing scanners
unchanged, suggesting that the name samkams is specific to both scanners only.

DNSCalc is given two major labels, ldpinch and cosmu, covering about 34.2%,
34%, 33.7%, and 33.5% by Microsoft, TheHacker, Kaspersky, and ViRobot. However,
both labels are generic and do not qualify for a correct label: ldpinch is a generic name
for password stealing Trojans and cosmu is for Worm spreading capability.

The majority of AV scanners mislabel darkness as IRCBot (providing about 58.7%
to 41.4% of correctness for the top five scanners). One potential reason to explain this
mislabeling is that the source code of Darkness is public and shared among malware
authors. Furthermore, as per the description above, the label is generic and captures a
variety of worms based on the method of their propagation. Similarly, ShadyRAT is
named as Hupigon by 10 scanners, with the highest AV scanner detecting it 70% of the
time and giving it the correct label 30% of the time (43% of the detections).

Note that the type of the malware explains some of the differences in the correct-
ness of labeling. For example, targeted and commercial malware families have lower
correctness rates, potentially because AV vendors are less equipped to deal with them,
and in some cases are less motivated to give them the proper labels since they are not
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seen as their main business. On the other hand, the mass-market malware (e.g., zeus)
has better correctness score overall across multiple AV vendors (as shown in Figure 5).

AV-based Trends Now we turn our attention to showing the performance of every
scanner we used over two selected malware families: Zeus and JKDDoS. We use the
first family because it is popular, have been analyzed intensively, and is of particular
interest to a wide spectrum of customers (e.g., banks, energy companies, etc). The sec-
ond family is selected based on the performance highlighted in the previous section.
The two families belong to financial opportunistic malware. To evaluate the correctness
of the labels, we define three classes of labels: correct labels (based on the industrially
popular name), generic labels (based on placeholders commonly used for labeling the
family, such as “generic”, “worm”, “trojan”, “start”, and “’run”), and incomplete labels
(including “suspicious”, “malware”, and “unclassified”, which do not hold any meaning
of a class). We plot the results of evaluating the scanners in Figure 5.
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Fig. 5. Correctness score of all studied AV scanners— zeus (top) vs jkddos (bottom). The stacked
bar plot legend is as follows: green for correct, blue for generic, and red for incomplete labeling.
The score is computed out of the total number of samples (i.e., the maximum stacked bar length
is equal to the completeness score of the given AV scanner for the studied family).

I Zeus. Although those labels are expected to give high scores—given their wide-
spread—the results are mixed. In particular, each scanner labels a malware sample cor-
rectly 25.9% of the time on average. When considering generic names, the percent
is increased to a total of 44.2%. When normalizing the correctness by the detections
(rather than the number of samples, this yields a correctness score of 62.4%.
I JKDDoS. We notice that, while certain scanners perform well in detecting and
giving the correct label for the majority of samples, as shown in the previous section,
the majority of scanners mislabel the family. When considering the correct label, any
scanner on average labels only 6.4% of the samples correctly. When adding generic
labels, the percent is 45.1% on average (and 26.2% of mislabeled samples, on average),
resulting in around 63% of correctness out of detections, and showing that the majority
of labeled samples are either mislabeled or generically labeled.

This evaluation measure of AV scans has perhaps the most critical implication. In
short, this measure says that, even when an AV provides a complete scan for a malware
dataset, it is still not guaranteed that the same scanner will provide a correct result, and
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thus a labeling provided by an AV vendor cannot be used as a certain ground truth of
labeling. On the other hand, findings in this section show that while on average the ma-
jority of scanners would perform poorly for a given malware family, it happens to be
the case oftentimes that a few of them perform well by capturing the majority of sam-
ples in the studied sets. Those scanners vary based on the studied family, highlighting
specialties by vendors with respect to malware families and labels, and suggesting that
the added variety of scanners, while may help in increasing covering, only adds to the
confusion under the lack of a baseline to guide their use.

4.3 Consistency

As defined in §2, the consistency score of an AV determines how it agrees with other
scanners in its detection (or labeling; depending on metric used for inclusion of samples
to a scanner) of malware samples. The consistency is determined per sample and is
compared across all AV engines in a pairwise manner. This is, the Σ scanners we use
in our study (48 in total) result in Σ(Σ − 1) pairwise consistency scores in total, and
(Σ − 1) of them capture the consistency of each AV scanners with other scanners. We
characterize those consistency scores by a box-plot that captures the first, second, and
third quartiles, along with the maximum and minimum of the distribution of consistency
score for the given AV scanner. In the following we highlight the findings concerning
one family (Zeus) and using the detection (completeness) as the inclusion metric. We
defer other combinations of options to the technical report, for the lack of space. The
results are shown in Figure 6.

We observed (on average) that an AV engine is about 0.5 consistent with other AV
engines, meaning that given a malware sample detected byAi, 50% of the time it is also
detected by Aj as malicious. Figure 6 illustrates the consistency of each AV engine
across all other engines using box plots (name of vendors are omitted for visibility).
The figure clearly displays a median of approximately 50% for all AV engines. This
finding further raises the question of how many AV scanners it would take to get a
consistent detection for a given dataset, and the subtle problems one may face when
utilizing multiple vendors for a given dataset.

Another observation we make is that there are 24 vendors consistent in their detec-
tion (almost perfectly) with a leading vendor in this particular family. There are several
potential explanation for this behavior. It is likely that there is a mutual agreement of
sharing, the 24 vendors scan the same set of samples as a single process, or perhaps
that some of the vendors are following the lead of a single major vendor by populat-
ing hashes of malware. We emphasize that the observation cannot be generalized on all
families, and when the phenomena is visible, the leading vendor changes.

4.4 Coverage

The coverage metric which we defined in §2 tells us how many AV vendors that we need
to use in order to cover the largest number of samples possible in a dataset. The two
versions we define for computing the coverage depend on the metric used for inclusion
of samples to a given scanner: completeness and correctness.
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Fig. 6. Consistency of detections by 48 vendors (using the Zeus malware family).

I How many scanners. Again, we use the same vendors we used for plotting the
previous figures of the completeness and correctness scores to answer this question.
We use the approximation technique described in §2 to find the coverage, and highlight
the findings by emphasizing the measurements for two families: Zeus and JKDDoS.
Figure 7 shows the completeness and correctness-based coverage for two families. From
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Fig. 7. The coverage using multiple AV scanners for Zeus and JKDDoS.

this figure, we make several observations. First, and as anticipated, we notice that the
number of scanners we need to use in order to achieve a certain coverage score is higher
for the correctness measure than the completeness. This finding is natural, and has been
consistent with the relative order of the scores of individual scanners, since detecting
a sample is not a guarantee for giving it the correct label, as we show in §4.1 and
§4.2. Second, and more important, in both families we observe that a perfect (or close
to perfect) completeness is not a guarantee for perfect correctness regardless of the
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number of AV scanners utilized for achieving the coverage. For example, while three
vendors are enough for achieving a perfect completeness-based coverage for JKDDoS
(and 10 are required in case of Zeus), the achieved correctness-based coverage in both
cases using the same set of vendors is only 0.946 and 0.955. Even when all available
vendors are used (48) together to cover the set of tested samples, a coverage of 0.952
and 0.976. This number does not change after using five and 25 vendors with JKDDoS
and Zeus, respectively. Finally, we observe that this finding concerning the correctness-
based coverage (regardless to the number of AV scanners we utilize) is consistent within
a number of families, including browfox (shady RAT) and darkness.

5 Discussion

Findings in this paper call for further investigation on the implications on systems which
use AV labels for their operation. Furthermore, those findings call for further investiga-
tions of how to make use of those labels, despite their shortcomings. In this section, we
proceed to discuss the implications of the findings, ways to improve the labeling, and
what we as a research community can do about those problems and directions. We set
the suggestions as open research directions each of which deserve a separate study. We
note that some of those directions are already touched upon in the past (academic and
industry), although they were rarely adopted. We stress their benefits to the problem at
hand and call the community to reconsider them with further investigation.

5.1 Implications

As mentioned in section 1, many systems rely in their operation on the labels pro-
duced by antivirus scanners for their operation. Those systems can be classified into
two groups: 1) operational systems, and 2) academic proposals (e.g., systems to extrap-
olate labels of known malware samples to unlabeled ones). To this end, the implication
of the findings in this study is two parts, depending on the targeted application.
• Research applications: for research applications that rely solely on AV labels for
evaluating their performance, the findings in those paper are significant. Those systems,
including the best known in the literature, use known and popular names of malware
families in the industry. Accordingly, and based on the diversity of results produced by
the various antivirus scanners used in the literature for naming malware samples, one
would expect the accuracy of those systems not to hold as high as claimed.
• Security operations: As for the operation systems that rely on labels produced by
antivirus scanners, the findings in this paper are warning and call for caution when us-
ing those labels for decision-making. We note that, however, security analysts in typical
enterprises know beyond what academic researchers know of malware families, and can
perhaps put countermeasures into action by knowing the broad class of a malware fam-
ily, which is oftentimes indicated by the labels produced by antivirus scanners. Notice
that this is not a knowledge gap, but rather a gap in objectives between the two parties.
Furthermore, operational security analysts oftentimes employ conservative measures
when it comes to security breaches, and knowing only that a piece of code is “mali-
cious” could be enough to put proactive countermeasures into actions. However, we
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emphasize that even the approximate names and generic classes of labels take time to
get populated in antivirus scans, which in itself may have an effect on operational secu-
rity. Finally, another class of operational security, namely the law enforcement efforts
which rely on names for online crime attribution, maybe impacted by the limitations of
AV labels highlighted in this work.

5.2 Remedies

Efforts to improve the labeling and the way they are used for serving the security of
individual and enterprises can be split into two directions: research and industry. In the
following, we stress several remedies and effort that can address the problem. Notice
that some of those directions are previously suggested, however they are not widely
adopted for various reasons, including the lack of interest and incentives. To that end,
we compile the list of remedies to stress their relevance to the problem at hand, and that
the research community can further contribute by pursuing those directions.
•Data sharing: most studies for classifying or clustering malware samples into specific
families require a solid ground truth. In reality, and if any of those systems to be realized
operationally, the ground truth is not needed for the entire studied or analyzed data, but
rather for at least a portion of it to 1) establish a baseline of accuracy, and 2) to help
tune those systems by exploring discriminative features to tell malware families apart.
Despite the drawbacks of benchmarking, a step that might help remedy the issues raised
in this study is by sharing data with such solid ground truth to evaluate those academic
systems on it. Despite some recent initiatives in enabling data sharing, transparency
with respect to that is still one of the main challenges that face our community and
platforms has to be explored for enabling and facilitating such efforts.
• Names unification: many of the names provided by antivirus scanners are inaccurate
as a side effect of the techniques used for creating them. For example, static signatures
that are fully automated give a generic name that often does not capture a specific
family. The same signature often results in different names, based on the vendor. One
way to help increasing the consistency and accuracy of names is to create such a naming
convention that can followed by multiple players in the antivirus ecosystem.
• Making sense of existing names: names given to malware families sometimes ex-
hibit the lack of a standard convention of naming. Having a convention, while help
addressing the problem in the future, may not address it for already labeled samples.
To this end, the research community can help by making sense of various names given
to malware samples by various vendors. Techniques with potential of resolving nam-
ing conflicts include voting, vendor reputation, and vendor accuracy and influence for
a specific family, and other techniques such as those utilized by VAMO [31].
• Indicators sharing: while there are multiple forms and platforms for sharing threat
indicators that can be used for accurately naming malware families and classes, those
indicators are less used in the community. Enabling the use of those sharing platforms
to realize intelligence sharing can greatly help accurately and actively name malware
families with less chances of name conflict.
•What is a name? Rather than a generation of the family or a historical background-
driven name that has little chances of adoption by variety of vendors, perhaps it is more
important to give a broad, but meaningful, name of a class for the malware family.
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Those names can be driven based on the functionality and purpose of the malicious
code, rather than the background story of family as it is the case of many of the names
used with malware families (including those analyzed in the paper).

6 Related Work

AV labels have been widely employed in the literature for training algorithms and tech-
niques of malware classification and analysis [6, 7, 15, 18, 25, 29, 30, 32, 33, 37, 39, 42]
(a nice survey of many of those works is in [34]). However, there is less work done on
understanding the nature of those labels. To the best of our knowledge, the only prior
work dedicated for systematically understanding AV-provided labels is due to Bailey
et al. [6]. However, our work is different from that work in several aspects highlighted
as follows. First, while our work relies on a set of manually-vetted malware samples
with accurate label and family association, the work in [6] relies on an AV vendor as
a reference. Second, our study considers the largest set of AV-vendors studied in the
literature thus far for a comparative work. Finally, given that we rely on a solid ground
truth, we develop several metrics of AV scans evaluation that are specific to our study
that are not considered before.

Related to our work is the work of Canto et al. [8], which tries to answer how dif-
ficult it is to create a reference and representative data set of malware. The authors
suggest that while one can create a dataset that is representative at a certain time, there
is no guarantee that the same dataset would be representative in the future. The work
also highlights labeling inconsistency on a limited set of samples over two vendors.
Our work, on the other hand, quantifies the inconsistency in labeling against a refer-
ence dataset. VAMO [31] is a yet another related work in addressing shortcomings of
malware labeling for research validation, and in introducing that tries to make sense of
AV labels. VAMO introduces a method that constructs a graph from the labels provided
by AV vendors, define a distance between labels, and group those that are close in dis-
tance into the same label. An issue that VAMO overlooks is that it still relies on those
labels provided by AV vendors as a ground truth for grouping malware samples. Unlike
the work of Canto et al. [8], for example, which highlights inconsistencies in labeling
against a fixed sample label, VAMO does not consider a reference label for evaluating
how good is their grouping.

7 Conclusion and Future Work

In this work, we unveil the danger of relying on incomplete, inconsistent, and incorrect
malware labels provided by AV vendors for operational security and in the research
community, where they are used for various applications. Our study shows that one
needs many independent AV scanners to obtain complete and correct labels, where it
is sometimes impossible to achieve such goal using multiple scanners. Despite several
limitations (in §1), our study is the first to address the problem and opens many future
directions. An interesting by-product of our study is several recommendations and open
directions for how to answer the shortcomings of today’s AV labeling systems. In the
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future, we will look at methods that realize this research and answer those directions
by tolerating across-vendors inconsistencies, and overcome the inherit incompleteness
and incorrectness in labels. We hope this work will trigger further investigation and
attention in the community to this crucial problem.
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