
Chatter: Exploring Classification of
Malware based on the Order of Events∗

Aziz Mohaisen, Andrew G. West and Allison Mankin
Verisign Labs, VA, USA

Omar Alrawi
Qatar Foundation, Doha, Qatar

ABSTRACT
Using runtime execution artifacts to identify malware and its fam-
ilies is an established technique in the security domain. Several
papers in the literature relied on explicit features derived from net-
work, file system, or registry interaction. While effective, the col-
lection and analysis of these fine-granularity data points makes the
technique quite computationally expensive. Moreover, the signa-
tures and heuristics this analysis produces are often easily circum-
vented by subsequent malware authors. To this end, we propose
CHATTER, a system that is concerned only with the order in which
high-level system events take place. Individual events are mapped
onto an alphabet and execution traces are captured via terse con-
catenations of those letters. Then, leveraging an analyst labeled
corpus of malware, n-gram document classification techniques are
applied to produce a classifier predicting malware family. This pa-
per describes that technique and its proof-of-concept evaluation.
This proof-of-concept concentrates only on network ordering and
three malware families are highlighted. We show the technique
achieves roughly 80% accuracy in isolation and makes non-trivial
performance improvements when integrated with a baseline classi-
fier of non-ordered features (of roughly 95%).

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General – Secu-
rity and Protection; C.4 [Performance of Systems]: Measurement
studies

Keywords
Malware, Classification, Sandboxing, n-gram.

1. INTRODUCTION
Malware analysis and classification is an important problem, with

applications of wide variety that impact our daily use of computing
and “the way we trust machines and codes” [26]. The rapid growth
of malware and their attacks does not excluded any types of users:
home users, enterprises, and governments [18]. Although mal-
ware detection has a more direct impact on home users, malware
classification and identification by a family name is equally impor-
tant for many reasons although in certain contexts and settings that
are more operational and industrial [33]. For example, identify-
ing a malware family enables orchestrating mitigation, assessing
damages after detection, and reinforcing disinfection mechanisms.
Additionally, understudying groups and classes of malware would
enable malware researchers to concentrate their efforts on specific
sets of families to understand their intrinsic characteristics, and to
develop better detection and mitigation tools for them [30].

Techniques for characterizing malware samples fall under two
schools of thoughts: signature-based [11,51] and behavior-based [7,
∗An poster on this work appeared in proceeding of IEEE CNS [31]

28, 39]. In the signature-based techniques for malware detection
and identification, certain patterns in the contents are searched to
determine whether a binary is benign or malicious, and if it is mali-
cious, to tell to which group or class of malicious codes it belongs.
Signature-based techniques rely on known set of patterns obtained
by reverse engineering and manually inspecting malware samples.
Accordingly, those techniques require many (specialist) staff-hours
of analysis, although computationally cheap by only considering
the static binary. On the down side, they are easy to circumvent
by malware that uses polymorphic obfuscation, packing, and code
rearranging. On the other hand, behavior-based techniques use run-
time execution artifacts to extract features for identifying malware
samples. While they are expensive, because they require execu-
tion of the malware sample to generate behavior artifacts, they are
more effective than the statistic signature-based techniques: they
are agnostic to the underlying code and can easily bypass code ob-
fuscation, packing, and polymorphism [28].

Without being able to identify the broader classes of malware
and their features, the capability of classifying malware would be
impossible to implement and to enforce in operational settings.
Furthermore, manually vetting malware samples against those fea-
tures to identify their classes—while certainly possible for small
datasets—does not scale for the real-world of malware populations [30].
To that end, machine learning techniques have been an enabler for
the automation of malware classification [44]. When a piece of
malware infects a system, the behavioral artifacts generated by the
malware contain a wealth of features that can be used to “footprint”
that malware with the help of machine learning algorithms. Those
footprints characterize trails of behavior associated with the mal-
ware and its use of memory, file system, networking, and registry,
among others. The outcomes and accuracy of machine learning
algorithms utilized in the literature rely heavily on three factors:
ground truth, algorithms, and features [24]. While algorithms are a
venue for constant development and improvements in the machine
learning community, the way they are used for classifying malware
samples is a straightforward implementation of such results. Many
algorithms are well-understood for their pros and cons. On the
other hand, both ground truth and features selection are specific
to the problem at hand [28].

Finding out a solid ground truth is a hard problem. Relying on
blackbox-like sources—including antivirus scans—for obtaining a
ground truth for detection and labels of malware samples and us-
ing them in machine learning techniques for malware classification
is shown to be insufficient [6, 30]. With the ever-increasing com-
plexity of malware, the limitations of signature-based techniques
utilized by major antivirus vendors, and the inconsistency in using
the signatures across multiple vendors makes them an unreliable
source for accurate ground truth. To the best of our knowledge, no
system or study in the literature relied on labels other than the ones
provided by antivirus vendors for ground truth, despite the common
belief that those labels are unreliable.



On the other hand, determining the correct abstraction level of
the artifacts to derive the features is an equally important part in
the classification process [24, 50]. Features that accurately repre-
sent the malware family are an important and defining criterion
for high-fidelity malware classification. Furthermore, the level of
complexity associated with engineering and deploying systems for
obtaining those features in operational settings determines the po-
tential of adopting and accepting such systems and classification
algorithms at scale. For example, while in some environments one
can force running a malware sample in an arbitrary environment to
obtain sufficient and representative behavior artifacts and features
and use them in the machine learning algorithms, this privilege is
not at no cost in online detection systems [41]. This is, when a piece
of malware runs on a host, collecting those deep features becomes
invasive to users using those hosts. To this end, while obtaining
the correct type of artifacts and features, with the correct level of
abstraction is important, it is always preferred that the system used
for obtaining such features is less invasive to host operations.

In this paper we address both issues by introducing CHATTER,
a “less-invasive” behavior-based system for collecting run-time ar-
tifacts and features of malware samples. CHATTER relies on the
order in which malware samples generate behavioral artifacts, and
use the frequency of the ordered artifacts as features. CHATTER
can be built as a stand-alone system to derive those features and to
classify malware samples, or as part of other virtualized execution-
based systems. For its ground truth, CHATTER relies on highly
accurate labels for manually-vetted malware samples. The vetting
process requires many man-hours by experts and engineers, and
we do that as a natural step in our system. We rely on those manu-
ally vetted labels to establish a baseline for operating and boasting
CHATTER, and future learning and operation in CHATTER is less
expensive by not requiring constant feed of those labels. To this
end, the contribution of this paper is as follows:

• We introduce CHATTER, a system for malware analysis and
classification based on cheap-to-obtain order-based behavior
artifacts and features. The operation of CHATTER is less in-
vasive than existing systems, and it is capable of creating ac-
curate representation of malware families of different types
by relying on cheap features. We argue for various scenarios
of deployment of CHATTER, addressing operational needs.

• We demonstrate the operation of CHATTER with three mal-
ware families. For the evaluation, we rely manually-vetted
malware. We demonstrate that CHATTER is capable of iden-
tifying malware samples by their groups and classes in a
binary-classification context with reasonable operational ac-
curacy, even when limiting the number of features used in its
operational to a smaller set from that used in the literature.

The use of n-grams in the context of malware classification and
analysis is an old story, as is the behavioral analysis as a tool. How-
ever, a major non-trivial and novel component in our work is that it
uses n-gram techniques to encode the order of subsequences of net-
work communication events. Our hypothesis is that each malware
type has a unique communication pattern characterized by a certain
order of events1. Building on this assumption we attempt to clas-
sify malware using only the order of their network communication,
and establish the connection between the behavior-based profiling
and the n-gram analysis as a tool for characterizing the order of
events2. This study looks at the behavior of the network traffic and

1This hypothesis is backed by the prior work of Forrest et al. [13],
which gives “a sense of self for Unix processes” by showing that the
order of system calls can be used to further tell whether a process
is benign or malicious. See the related work in §5 for differences
2Our choice of network features is not arbitrary: as discussed in
the rest of the paper, network features are cheaper than file system

abstracts the features making the semantics of the underlying net-
work communication irrelevant to the classification process. For
our study we looked at three malware families that belong to dif-
ferent malware types; DDoS, Trojan, and targeted.

The organization of this paper is as follows. In section 2 we re-
view the design of CHATTER. In section 3 we evaluate CHATTER
on three real-world datasets of different malware families. In sec-
tion 4 we discuss several aspects of CHATTER and its operation. In
section 5 we review the related work. In section 6, we draw several
concluding remarks.

2. SYSTEM AND DESIGN
Like most related work in the literature using behavior artifacts

for characterizing malware, CHATTER relies on the execution of
malware samples. For its intended operation, CHATTER does not
require the execution of malware samples in a virtualized environ-
ment, and can perhaps be used for online characterization of mali-
cious activities.

2.1 Design Goals and Requirements
We start our design by outlining goals that CHATTER tries to

achieve. These goals are intended as a guideline. In section 4.1 we
show how these requirements are met in our system.

• Cost-effective: a nice property that a system used for mal-
ware characterization should achieve is a balanced and low
cost associated with the extraction of the features. For that,
we emphasize in CHATTER that we exclude solutions that
would capture the most of the features by requiring deep
analysis of large number of artifacts generated by the mal-
ware sample as it is the case in the prior literature (AMAL [28]
is an example—among many other systems in the literature [6,
7], where the whole image of 10GB hard drive and 256MB
of RAM are analyzed to extract features.)
• Less-invasive: while it might possible to collect behavioral

artifacts about the execution of malware samples in instru-
mented and virtualized environment, it is always desirable to
be able to collect such artifacts about malware in their natu-
ral habitat while running on their hosting operating system.
A system that can be deployed externally to observe the be-
havior and anomaly of a malware is ideal. We keep in mind
that while this is a design objective that the system has to
meet in principle, validating the system by identifying mal-
ware samples does not need to meet this feature. In fact, we
use an off-the-shelf sandboxed system under full control for
collecting malware artifacts as a proof-of-concept.
• Generalizable and multi-purpose: while the end goal of CHAT-

TER is to characterize malware samples by their behavior, our
end goal is to have a system that is generalizable. This is, we
intend to build a system that can characterize any malicious
activity or entity based on the behavior, but not limited to the
malware. In section 4.3 we show two of such applications
that benefit from such generalization.
• Evolvable to address behavior changes: given that many

malware families evolve over time to circumvent behavior-
based techniques for malware detection and classification,
one ideal goal of our system is to resist this evolution by pro-
viding an evolvable techniques to address changes in mal-
ware behavior. Our system should rely on the best set of
features representative to the malware samples of interest.
• Accurate: the system should make use of a solid ground-truth

and match this ground truth by generating as small as possi-
ble of false alarms. While it might be impossible to match the

features to obtain. For example, they can be captured without the
need of residing on the same host as the malware being executed.



AutoMal
Malware 
Feed

Raw Artifacts 
With timestamps Chatter Malware 

Labels

Figure 1: Flow diagram of CHATTER and its use of AUTOMAL
and its behavioral artifacts

ground truth 100% of the time, our guideline for the accept-
able accuracy is operational: oftentimes, it is only required
to weed out the majority of irrelevant malware samples, and
a small percent of false alarms might be tolerated.

While these requirements are idealized, and achieving them all
at once might not be easily possible, we try to achieve them to a
great degree in CHATTER. We show how they are achieved as we
walk through the design and in its evaluation.

2.2 System Workflow
We begin by summarizing the CHATTER workflow and its inter-

action with a sandboxed execution environment capable of produc-
ing a list of events that take place during the malware execution, as
visualized in Fig. 1.

2.2.1 Sandboxed Execution and Artifacts Collection
While any sandboxed execution environment (or bare metal exe-

cution) can be used for extracting the features utilized in CHATTER,
we use an operational system named AUTOMAL [28] for that pur-
pose. AUTOMAL is a windows-based sandboxed execution system
capable of collecting low-granularity artifacts to represent the way
malware samples interact with memory, file system, registry, and
the network.

AUTOMAL enables researchers and customers to feed into it bi-
naries that are likely to be malware samples. For details, refer
to [28] on the design and operation of AUTOMAL. However, in
short, AUTOMAL consists of 4 unites: malware samples submit-
ter, controller, workers, and back-end storage. The malware sam-
ple submitter enables users to submit binary codes to the systems,
which are then queued until some resources in the system are avail-
able for analyzing the provided malware sample. The controller
makes sure that resources are fully utilized by fetching tasks from
the samples’ queues, initiating virtual machines (VMs) as work-
ers, loading the proper configurations and settings, and running the
malware sample. The worker runs the malware sample and collects
run-time artifacts about the malware sample. As of its current de-
sign, AUTOMAL enables the collection and profiling of memory,
network, file system, and registry artifacts and features. Finally,
once the malware sample is executed in the virtual environment,
the collected artifacts are passed to the controller, which logs them
in the backend storage unit.

While all of those artifacts can be used in CHATTER to achieve
its end goal, some of the features are more expensive than others,
and obtaining them in a slightly different context than virtualized or
tightly controlled environment would be almost impossible without
interfering with the normal operations on hosts (further details are
in section 4). For that, we focus on network-related features gener-
ated by AUTOMAL and use them for the operation of CHATTER in
identifying and classifying malware samples. Notice that any other
system that is capable of producing the limited number of features
used in our system can be utilized. To this end, CHATTER is treated
as a blackbox that takes the raw-artifacts with timestamps for mal-
ware samples from AUTOMAL and generates labels for those mal-
ware samples based on a highly-accurate set of manually inspected
training labels. The detailed diagram of the internals of CHATTER
is shown in Fig. 2. In the following, we walk through the steps of
its operation.

2.2.2 Behavioral Documents and Their Extraction

Artifacts to feature 
Transformation

Features to alphabets
transformation

n‐gram features 
extraction

Machine learning 
Algorithm

Raw artifacts

n Algorithm selection
Ground truth

Training

Transformation transformation extraction Algorithm

Labels 

Figure 2: Flow diagram of CHATTER

CHATTER takes the raw artifacts generated by AUTOMAL and
highly-accurate labels of malware samples associated with those
artifacts as an input. The raw artifacts generated by AUTOMAL are
named a behavioral profile of the malware sample. The behavioral
profile maintains the notion of order to it: a profile would list all
events and execution actions as viewed at the behavioral level with
their respective order. CHATTER then transforms the artifacts into
features. For example, a file system artifact representing the event
of writing a file on a certain path is transformed into the features
of file_written_on_a_path. A DNS query of type MX on port 53
would generate features like dns_query, port_53, and mx_query,
all of which can be combined in the order they happen to represent
the use of network resources by the malware. Once all artifacts are
transformed into features, those features are transformed again into
unique alphabets. In this phase, CHATTER computes the unique
set of features regardless to their order (details in section 3.2) and
assigns a character from a pre-determined list of alphabets to each
of those unique features. After generating the unique characters,
CHATTER transforms the behavioral profile of the malware sample
being analyzed into a new profile (document) in terms of the char-
acters and alphabets it used as a representation. Abstracting the
behavioral profile into a document according to the way described
above simplifies applying a wide range of literature on “text min-
ing” for observing interesting and relevant patterns for identifying
such document and classifying it into a broader class.

2.2.3 The n-gram Features Extraction
As mentioned earlier, CHATTER relies on the order in which ar-

tifacts are generated to identify a malware sample by its broad fam-
ily. To this end, CHATTER utilizes n-gram features obtained from
the behavioral document. Given a value for the parameter n and the
behavioral document, CHATTER computes all n-grams in the doc-
ument. CHATTER then uses the count of the n-grams it generates
as the seed for the feature vector it will use in the machine learning
algorithm for identifying the malware sample. After computing the
n-grams and their counts for all malware samples, CHATTER takes
the union of the unique features of each malware sample, where
features are computed as the counts of the individual n-grams, and
fill in the counts of the individual malware samples. This step is
done to unify the feature vector used for representing the malware
samples. Notice that, in theory, one can avoid this step by con-
sidering the features vector using all combinations of the alphabets
used in representing the behavioral document with the given length
n. However, this approach would have two disadvantages: 1) it
will result in a sparse representation that is, unlike in text-related
n-representation, would be under utilized, and 2) it will explode
the number of features greatly to the extent that one cannot easily
process them in a reasonable time with the algorithms we use.

2.2.4 The Machine Learning Component
Once the n-gram features are computed for the different malware

samples, they are fed into the machine learning algorithm of choice
to label them. Using a training set, the machine learning model is
built, and then using a testing set it is validated for its accuracy, and
tuned against the feature it uses. Then, once the model is created,
malware samples are passed to the system to identify their family.
Further details on the use scenarios of CHATTER are in section 4.

3. EVALUATION



Table 1: Malware families used in the evaluation of CHATTER,
including their size and the average number of events per exe-
cution trace (further details are in §3.1).

Family Quantity Characters Avg.
Zeus 1025 50.74

Darkness 544 61.47
Shady RAT 1130 52.74

In this section we walk through the evaluation of CHATTER, with
details on the dataset, and the method used for establishing a base-
line for ground truth, the set of features we used for evaluating the
different malware families, the machine learning algorithms, eval-
uation metrics, and findings and results.

3.1 Datasets and Ground Truth
For the evaluation of CHATTER, we use three malware families:

Zeus, Darkness, and Shady RAT (SRAT). The combination of all
three malware families covers a wide range of network behavior
and provides good evaluation points to conduct this study to deter-
mine the effectiveness of event order on the network for classifica-
tion purposes3. Each malware sample in these families is obtained
from an operational product, where sources of the malware sam-
ples include customers (banks, energy companies, etc), partnering
antivirus vendors, and researchers private research on popular mal-
ware sample. Once the malware samples are fed into the system,
AUTOMAL, they are executed for a certain amount of time to gener-
ate behavioral artifacts that are then used in CHATTER as described
in section 2.2. We provide details on these families and their con-
texts in the following section4, and show their population and the
average length of their behavior document in characters in Table 1.

3.1.1 Datasets
Zeus: Zeus [29] is the first malware family that we use in evaluat-
ing CHATTER. Zeus is a famous banking Trojan that is used by cy-
ber criminals to run a botnet to steal money, credentials, and system
resources from the infected victims and their machines. When the
Zeus malware infects a system several artifacts are created like file
system, registry, network, and memory. Upon infection, the mal-
ware communicates with the command and control (C&C) server
by sending information pertaining to the infected host and request-
ing a configuration file to instruct the Trojan for further actions.
Zeus also periodically sends out stolen data to “drop site” that is
noted in the configuration file sent from the C&C server. These
network artifacts can help networks administrators identify possi-
bly Zeus infected host in their environment. These network arti-
facts can also be used to classify Zeus network traffic thus label-
ing malicious code by their network artifacts. Accordingly, Zeus
is one potential good example to demonstrate CHATTER. For the
evaluation of CHATTER, we use 1025 Zeus malware samples. To
understand the capabilities of CHATTER, we need another class of
samples that are not Zeus. For that, we randomly select a sam-
ple set of the same size (1025 samples) from a large repository of
malware. The samples of this set consist of multiple families.
Darkness: The second malware family we use for evaluating CHAT-
TER is the distributed denial of service (DDoS) bot known by the

3Our system and technique are usable for a wide variety of mal-
ware families, and the three families used in this study are only for
the demonstration of the systems’ operation based on variety of be-
haviors. We ran our system on 13 other families, including Ramnit,
Bredolab, Zero Access, SillyFDC, and Virut, among others, and
confirmed the systems’ operation and accuracy on them—in all of
the aforementioned families, an accuracy of over 90% is achieved.
4To foster transparency and reproducibility of results, we intend to
release the dataset used in this work to the larger community.

names Darkness and Optima (we will refer to it as Darkness through-
out the rest of the paper). Darkness infects machines for the sole
purpose of using the resource to carry out DDoS attacks. The bot
infects the system by installing itself as a service and begins to
communicate with the C&C server to receive commands. Dark-
ness is capable of carrying out hypertext transfer protocol (HTTP)
flood, Internet control message protocol (ICMP) flood, and trans-
mission control protocol (TCP) or user datagram protocol (UDP)
flood attacks. The HTTP flood attack uses different user-agent for
each HTTP request making it hard to identify DDoS traffic. The
network artifacts generated by the Darkness are noticeable on a net-
work due to their high volume, which makes it a good feature to use
for classifying the DDoS bot using machine learning algorithms.
Shady RAT: (SRAT) The final malware family considered in eval-
uating CHATTER is a target malware that McAfee reported on by
the name Shady RAT [3] (we will refer to it as SRAT throughout
the rest of the paper). The malware targeted several high profile
organization and government entities to steal intellectual property
and sensitive data. The malware employs a covert communication
channel that makes it hard to detect on the network. SRAT comes
in usually as spear phishing email that social engineers the victims
into running the malware on their system. The malware infects the
system and starts its communication with the C&C server. The
communication is done by the malware downloading an HTML
page and parsing out HTML comments which contain encrypted
commands from the C&C server. Another method the malware
would fetch a page and use steganography to decrypt commands
from images embedded in a web page. This communication chan-
nel is very hard to detect by a network administrator because it
would blend in with regular traffic flowing through the network.

3.1.2 Establishing A Ground Truth
Labeling malware to establish a ground truth is perhaps the most

important step needed for obtaining reliable and meaningful results
in any supervised classification task. The prior literature relies on
certain methods for labeling malware samples, but mostly using la-
bels and names provided by anti-virus scanners. However, we no-
ticed by experimenting with several malware families that antivirus
scanners are not a reliable source for labeling. This observation
is confirmed in several recent works [6, 7, 41]5. The limitations of
AV-scanners in the aspect are understandable, given that the prior-
ity and chief goal of those scanners is to give an accurate detection,
but not a label for what is detected through them. Furthermore, the
wide variety of techniques deployed for labeling makes a consistent
label among multiple vendors almost impossible.

To this end, we use a different approach to labeling malware sam-
ples to assist the reliability of the evaluation of this study. The mal-
ware samples used in this study are collected over a long period
of time, and that enabled analysts in our organization to manually
identify and label them. This process can be time-consuming: at
average a previously unseen malware sample can take more than 10
hours to manually characterize and give the proper label and name
by an expert. However, often time this effort comes natural in our
organization and does not require dedication of such valuable man-
hours for this research initiative only: often time we are contracted
by our customers to analyze and report back to them on a given set
of rogue binaries. Those binaries accumulated over time are used
as our dataset with fine labels created for them by our analysts.

Beside customers who are interested in analyzing and understand
the behavior of binaries used in their enterprises, we have two ad-
ditional sources of malware samples: 1) samples provided to us
by partnering antivirus vendors interested in intelligence sharing,
5Except in [30], these studies do not particularly go in depth to
analyze the limitations of the AV-based labeling but agree with us
in total in this conclusion based on undisclosed experiments—yet,
admitting it’s a challenging problem with no other way to obtain
labels, The works in [7, 41] use AV-labels as a ground truth.



Table 2: Features used in composing the behavioral documents
of malware samples studied in CHATTER. Each class of fea-
tures consist of multiple features, and each is represented as an
alphabet in the behavioral document.

Feature class Features listing
IP and port unique dest IP, certain ports

Connections TCP, UDP, RAW
Request type POST, GET, HEAD

Response type response codes (200s through 500s)
Size request (quartiles), reply (quartiles)

DNS MX, NS, A records, PTR, SOA, CNAME

and 2) malware samples collected by our analysts through their
own investigations and explorations. The latter samples are usu-
ally analyzed by analysts to understand trends and patterns in the
malware eco-system. For the first feed provided by antivirus ven-
dors, malware samples are delivered to us from partner antivirus
vendors without signatures. For that, and to weed out irrelevant
malware samples using Yara signatures [1] created by our ana-
lysts based on their knowledge of the malware family of interest
(more details on those signatures are provided in [28]). Notice
that Yara signatures are only used for pre-processing, and are not
used for giving a label to to a malware sample—they are used
rather as a secondary channel for labeling. After that, we feed
those malware samples to an automated malware analysis system,
called AMAL [28], which uses behavioral patterns, and analyst-
fed labels associated with those patterns, to extrapolate labels to
previously unseen samples. The same technique is utilized for
analyst-collected samples, although the latter ones heavily depend
on manual inspection by those analysts in giving labels, same as
with customers-related samples6.

While one may see this way of obtaining labels as a limiting fac-
tor in the operation of CHATTER and other systems that use analyst-
vetted labels, we argue otherwise in section 4.2. We capitalize
on the continuous need of manual inspection in certain businesses,
thus providing a by-product for the operation of CHATTER.

3.2 Features and Feature Selection
Running a malware sample in a sandboxed environment results

in a lot of artifacts, however not all of them are relevant nor mean-
ingful in identifying a malware sample. Accordingly, we limit our
attention to only representative and meaningful artifacts that may
result in representative features. For that, we rely on the domain
knowledge of an expert of the studied malware samples and their
families, and encode that knowledge in the artifacts selected for
characterizing the malware samples of the various families.

To this end, we select 26 features all of which are network-
related (for the rationale we mentioned in section 1) as shown in
Table 2. Those features are selected according to the description in
section 2.2.2, and are not to be confused with the n-gram features.
Furthermore, 26 features are generated as a representation for the 3
malware families collectively. However, we notice that some of the
features do not exist for a given malware family, as shown in Ta-
ble 3. As we generate behavioral documents of each malware sam-
ple upon its execution, we obtain a set of characters transformed
according to the method described in section 2.2.2 with the average
length of document (in characters) as shown in Table 1. Following
the procedure in section 2.2.3, we obtain the unique set of n-grams
(in a condensed representation) for each malware sample. We try
that for various values of the parameter n (1 to 8 are shown in Ta-
ble 3 and used in the rest of the experiments later on).

6We note that the majority of samples used in this study come from
customers, where man-hours are used for labeling samples, while
the two other sources represent a minority of the samples.

Table 3: The number of unique n-grams actually observed in
each of the studied families.

n value 1 2 3 4 5 6 7 8
Zeus 24 102 250 481 943 1690 2638 3794

Darkness 24 103 243 461 875 1503 2266 3149
SRAT 25 105 247 460 877 1536 2337 3300

n-gram features selection. While features selection algorithms
exist to reduce the number of features used in classifying malware
samples with reasonable accuracy, we avoid using any of those al-
gorithms for the following reasons. First, the goal of CHATTER is
to enable the use of new features rather than testing which subset
of them performs best. Second, reducing the number of features
and trying off-the-shelf algorithms, like recursive features selec-
tion (RFS), principle component analysis (PCA), and others, is an
orthogonal work that brings little merits to this work. However,
for the completeness of this work we experimented with an off-the-
shelf feature selection algorithm (namely, the RFS) and found that
one can achieve the same accuracy as with the whole set of n-gram
features but using a smaller set of them. This result, while relevant
to some extent, is straightforward, and is in line with a large body
of literature on the problem [7, 9, 28, 29, 50].

3.3 Evaluation Metrics and Procedures
To evaluate CHATTER, we use evaluation metrics widely used in

the related literature [7, 28]: the accuracy, precision, recall, and F1
score. For a binary classification problem, in which it is required to
determine if a given malware sample belong to the class of interest
S, we define the following possibilities: 1) true positives (Tp) is
the number of samples correctly identified by the machine learning
algorithm to belong to the class S. 2) false positive (Fp) is the num-
ber of samples marked by the machine learning algorithm falsely
to belong to S. 3) true negative (Tn) is the number of samples
marked by the machine learning algorithm correctly not to belong
to S. 4) false negative (Fn) is the number of samples marked by
the machine learning algorithm falsely not to belong to S (but they
are actually in S). Using the four outcomes and counts above, the
precision, recall, accuracy, and F1 score are defined as follows:

Precision =
Tp

Tp + Fp
,Recall =

Tp
Tp + Fn

,

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
,

F1 score = 2× precision× recall
precision + recall

.

For all experiments we run to evaluate CHATTER, we use the k-
fold-cross-validation method with k = 10. In this method, the
input dataset is divided into k-folds, where k− 1 folds are used for
training the machine learning algorithm and the remaining fold is
used for testing. The process is repeated k-times by changing the
testing dataset among among the k possible folds. At the end, the
result—in terms of the true and false (positive and negative)—is
computed as the average over the k runs. We set k to 10 because
this is the widely used setting in related contexts.

3.4 Machine Learning Algorithms
In the evaluation of CHATTER, we use three machine learning al-

gorithms: the k-nearest neighbor (k-NN), support vector machines
(SVM), and decision tree classifier. All of the three algorithms are
intended for binary supervised learning, and are capable of identi-
fying the membership of a malware sample into one of two classes.
In the following, we formally and briefly review those algorithms
Support Vector Machines (SVM): Given a training set of labeled
pairs (xi, yi) for 0 < i ≤ `, xi ∈ Rn, and yi ∈ {1,−1}, the



(L2-regularized primal) SVM solves:

min
w,b,ξ

1

2
wTw + C

∑̀
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0

where the training vectors xi are mapped into a higher dimensional
space using the function φ, and the SVM finds a linear separating
hyperplane with the maximal margin in this space. C > 0 is the
penalty parameter of the error term (set to 0.01 in our work). ξ(w,
x, yi) is called the loss function, where we use the L2-loss defined
as

ξ(w,x, yi) = max(1− yiwTxi, 0)
2.

Decision Trees Classifier: We utilize a single split tree for two
classes classification using all of the features provided by CHAT-
TER. For the target class label Y = y1, . . . , yn and a set of feature
vectors x1 . . . ,xn, at each internal node of the tree—and for the
training set—we apply a test to one of the inputs, namely xi, de-
termining to go either left or right in the tree branches based on the
outcome of the test. When running over all of the training feature
vectors, we mark the leaf nodes as the aggregate (mean) of all the
training samples (to one of the class labels in Y .) For testing, we
do the same and assign the label of the leaf to that of the sample
feature vector used to reach to the leaf. We omit further details
and refer the reader to [2] for an extended description. Notice that
other variations of the decision trees are shown in the literature to
provide better results, including random forests. We did not try
any of those techniques, since the technique we utilized already
provided reasonable results. We leave trying such techniques as a
future work.
The k-Nearest-Neighbor The k-NN is a non-linear classification
algorithm. In the training phase, we provide the algorithm of two
labels and a set of training samples. In the testing phase, for each
sample vector a, we give it the label of the most frequent among
the training samples nearest to it. For the lack of space, we refer
the reader to a textbook explanation of the technique in [2].

3.5 Results
Computing n-grams: For a selected n it is straightforward to pro-
duce trace substrings in a sliding window fashion. Table 3 shows
the number of unique n-grams actually observed. While there are
266 possible 6-grams, only 1690 (0.0005%) are actually observed
for the Zeus malware family. A bag-of-words representation is ex-
tremely sparse and this hints at the underlying relationship/dependency
between certain network actions.
Results in isolation: Table 4 shows performance for selected val-
ues (n=1,4,8) across all families and algorithms. To make sweep-
ing generalizations across all families, Decision Tree classifiers
tended to perform best with an average accuracy of ≈80%. Al-
though the transition from n = 1 to n = 4 tended to produce no-
ticeable performance increases, the performance ramifications of
the next increase was more mixed. Between families we observe
that “Darkness” malware performed most poorly overall, while “SRAT”
performance fluctuated wildly based on the algorithm applied.
Atop a baseline classifier: While it is clear that CHATTER is able
to independently predict malware family with reasonable accuracy
based on the order in which network artifacts happen, it is also de-
sirable to see if it can contribute when paired with a baseline clas-
sifier. Fig. 3 shows this result, where the baseline classifier consists
primarily of filesystem features. Compared to results presented in
Table 4 and compared to the results and findings in [29] performed
on the same dataset, we observe that ordered features are capturing
independent portions of the problem space and making non-trivial
improvements to overall precision, recall, accuracy and F1 score.

4. DISCUSSION
In this section we highlight interesting findings and observations

from our study of CHATTER. In our study we limited the value
for n to 8 and used only the features that had a vector value to
classify the malware families. For example, if using all possible
feature combination for n=8 the number of features would be 268

features. Instead, we only used ≈ 3800 features for the largest n
value. These numbers make the classification much more feasible
by only considering feature vectors with values. To this end, we
note that the malware families with more features had a better ac-
curacy score around the value of n=4 or 5 than for different values
of n.

For example, Zeus Banking Trojan had on average more features
than the other families, as n increased, and it performed better in
the classification. We do see a performance drop-off as n grows
beyond the value 5. The optimal number for n-gram seems to lie
between the values 4 and 5. This observation is also validated with
the classification results from combining file system and ordered
network features. The accuracy graphs in figure 3, 4, and 5 show
downward trend as n takes on values larger than 5. We conclude
that order does improve classification by about 10% to 12%, see
table 4, with an optimal value of 4 or 5 for n.

We note that the classification for the DDoS malware family was
less accurate than the targeted malware or Zeus even when com-
bining file system features; see figures 3, 4, and 5. This can be
explained by the way Darkness infects a host machine and uses it
as a bot. In the case of the targeted malware and Zeus, our file
system feature selection captures their artifacts pretty accurately
by considering several predefined installation locations like APP-
DATA directory and quartile of file sized generated during infec-
tion. The Darkness malware does not create any files instead, it
moves itself to system directory and creates a service, which are
several registry key value pair, to persist and infect the system.

This technique is not captured by the file system artifacts ex-
cept for the initial infection file. Adding the file system feature to
the ordered network feature did not improve the results by much
as noted in the graphs above. The file system artifacts and registry
artifacts are more expensive to capture since they require an captur-
ing mechanism on the virtual machine. Whereas network artifacts
can be captured externally by simply monitoring the network inter-
face. This trade-off gives us the option for cheaper classification
with a degradation in accuracy, about 5% to 7%, or more accurate
but expensive classification.

In the following, we extend our discussion to consider how the
CHATTER meets our design requirements, outline some limitations
of the technique, and some potential application that one can build
using the same idea of CHATTER.

4.1 Meeting Design Requirements
In the following we highlight how CHATTER meets the design

requirements outlined in section 2.1. First of all, our system is cost-
effective when deployed for characterization of malware samples.
This effectiveness comes from two directions: its use of a single
class of artifacts and features, and abstraction of features into order
rather than raw features. It has been shown in the literature that a
system used for characterizing a malware sample based on the net-
work artifacts generated by the malware sample can run an order of
magnitude faster than a system that looks at a large spectrum of fea-
tures. For example, AMAL [28], which is similar in its operation
to a large body of work in literature, operates ideally on 128 vir-
tual machines, and is capable of processing 23,000 malware sam-
ples daily. CHATTER, on the other hand, is capable of processing
370,000 malware samples per day using the same infrastructure.
This number of malware samples is way more than what we re-
ceive and analyze daily. Indeed, the number is even more than the
250,000 samples a popular antivirus provider like Sophos detects



1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

P
re

ci
si

on

●

●
● ●

●

● ●

●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(a) Precision

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

R
ec

al
l

●
●

● ●

●
●

● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(b) Recall

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

A
cc

ur
ac

y

●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(c) Accuracy

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

F
−

1 
S

co
re ●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(d) F1 Score

Figure 3: Performance measures for the Zeus malware with network artifact classification using CHATTER.

Table 4: Precision, recall, accuracy and F1-score for selected n-gram values.
n-grams 1 4 8
Algorithms P R A F1 P R A F1 P R A F1

Z
eu

s k-NN 80.79 79.68 81.48 79.97 79.07 83.90 82.25 81.35 78.29 78.17 79.64 78.09
SVM 67.41 82.67 72.69 73.92 75.96 80.47 78.67 77.84 80.41 82.87 82.45 81.50
Decision Trees 80.14 80.90 81.74 80.42 81.13 81.82 82.67 81.35 80.82 82.82 83.02 81.77

D
ar

k. k-NN 76.22 73.13 76.08 74.56 80.40 71.52 77.70 75.57 71.38 69.58 71.65 70.20
SVM 76.82 32.38 62.24 45.05 78.18 71.32 76.45 74.35 76.62 76.36 77.22 76.27
Decision Trees 80.45 72.56 78.20 76.07 81.75 72.89 79.04 76.93 80.50 68.37 76.39 73.59

SR
A

T k-NN 81.38 76.78 82.78 78.45 83.87 81.83 85.51 81.95 83.99 74.28 82.93 78.16
SVM 76.88 65.43 75.88 69.55 83.70 82.94 86.23 83.03 85.68 80.86 86.33 82.71
Decision Trees 85.16 81.11 86.44 82.60 88.28 81.65 88.01 84.45 86.13 78.92 85.54 81.85

and analyzes daily which is way more than our daily7.
The same property CHATTER has of relying on network features

only makes it also less-invasive: those features can be observed
on the network without having to reside on the host on which the
malware is executed. However, we notice that the host has to run
no processes beside the malware in order for CHATTER to collect
relevant features. This latter condition can be fulfilled by running
the malware and the host in a limited (monitored) mode of opera-
tion. This mode of operation can be further triggered in CHATTER
by observing some suspected hosts for harboring malware and this
approach allows that host to be studied directly.

As we discuss in the following section (§4.2), our system re-
quires maintenance to address evolution in behavior of malware
samples. However, this maintenance is made easy given the oper-
ational context of CHATTER: researchers keep feeding the system
with new ground truth labels over its operation life-time. Accord-
ingly, any change in behavior will be capture in this ground truth,
and the system can be easily retrained to capture such changes.

Finally, while the accuracy provided by CHATTER when run-
ning in isolation is less than that provided by other systems; e.g.,
AMAL [28], the results are operationally acceptable: oftentimes
it is required to only weed out likely irrelevant malware samples
in large repositories. Other false alarms can be further captured
and addressed using more expensive techniques (e.g., by combin-
ing other features as we have shown in section 3.5). We emphasize
that while many academic studies on malware classification and
analysis strive to provide a 99.9% accuracy, our goal in this work
is to provide an operationally acceptable accuracy by trading com-
plexity and cost of operating the classification system.

For our classifiers we used k-folds to test the accuracy of our sys-
tem, where k was set to 10. The accuracy we achieved more than
80% for all cases, which in an operational environment is accept-
able. Although academic studies strive for 99% accuracy, in op-
erational environment this is not possible, even for 90% accuracy.
Thwarting the system’s accuracy using obfuscation and re-ordering

7http://bit.ly/17UVQ19

is not possible because we are looking at the network behavior ar-
tifacts.

4.2 Limitations
There are several limitations of CHATTER that would impact its

performance, which we address in this section.
Noised features: Like most behavior-based systems for malware
classification CHATTER performs best when malware samples do
not produce extra information to disguise their behavior and fool
the used machine learning algorithm. Or even worse, often times
malware samples evolve overtime, and a real-world system for mal-
ware characterization and classification needs to address this evolv-
ability. However, unlike systems that make use of exact match-
ing of behavior profiles, CHATTER provides some flexibly in how
matching of malware samples are grouped together using the n-
gram features. A potential scenario for fooling CHATTER is to gen-
erate a lot of irrelevant behavioral artifacts and plug them in the
behavioral profile in the hope of hiding what is relevant and used
for characterizing malware samples. To that end, CHATTER will
generate potentially different features for malware samples that po-
tentially belong to the same family. While the problem is generic
and not limited to the operation of CHATTER, but rather any system
that relies on behavioral patterns in the execution of malware, we
address this issue in two ways:

• We emphasize that not all the features generated by a mal-
ware sample need to be used to operate the machine learn-
ing algorithm: a feature selection algorithm can be used to
marginalize the impact of the noised features on the opera-
tion of CHATTER.

• We note that certain events in the operation of a malware
sample that belongs to the malware family have to happen
in the same partial order, regardless to the noise put in be-
tween of them. Our future work to address this limitation
is to derive features concerning those events as they happen
in their partial order by filtering out the noise between them.
While this might seem to requires deep understanding of the

http://bit.ly/17UVQ19


1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

A
cc

ur
ac

y

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(a) Accuracy

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

F
−

1 
S

co
re

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(b) F1 Score

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

P
re

ci
si

on

●
● ● ● ●

● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(c) Precision

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

R
ec

al
l

● ●
● ●

● ● ●
●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(d) Recall

Figure 4: Performance measures for Targeted malware (SRAT) with network artifact classification using CHATTER.

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

A
cc

ur
ac

y ●

● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(a) Accuracy

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

F
−

1 
S

co
re ●

● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(b) F1 Score

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

P
re

ci
si

on

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(c) Precision

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

R
ec

al
l

●

● ● ●

●
● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(d) Recall

Figure 5: Measures of performance for Darkness DDoS malware network artifact classification.

studied malware families and their expected behavior, signal
processing techniques might be utilized to perform the task
in less expensive way. For example, in the future it is worth
considering how statistical and information theoretical char-
acteristics of the n-gram features can guide the process of
deriving representative and meaningful features. Notice that
employing this partial order of events would address the is-
sue where a malware sample will craft a legitimate-looking
network artifact to also add noise to the artifacts used for
characterizing it.

Adaptive malware: Also, as in other behavior-based systems, adap-
tive malware samples produce various behavior profiles based on
the environment they are run in and are an issue for the opera-
tion of CHATTER as well. Even worse, some malware samples
would not act upon running in a sandboxed environment, which
will be an issue if the sandboxing approach is to be used for de-
riving networking features in CHATTER. We address this issue in
two ways: AUTOMAL, which is used as the sandboxing tool for
CHATTER, generates patches to deceive malware samples by re-
turning to them registry values indicating that they are running on
the bare metal. Furthermore, for sophisticated malware samples
that do not respond to those patches, we run malware samples on
the bare metal (or in a hardware virtualized environment, which of-
ten proves to work). We notice that this problem, while affects the
results of CHATTER, is not specific to the system but to the under-
lying tool used for deriving the features. One scenario of applying
the work in reality is to use on-the-wire monitoring, which will not
require sandboxed execution thus eliminating the problem.
Continuous training and cost of labeling: Because of the evolu-
tion of malware samples, continuos training is needed in our system
to adapt to changes in artifacts generated by them and used for cre-
ating vectors of features. While this issue might seem as an inherit
shortcoming for machine learning based techniques, it is addressed
naturally in CHATTER: as mentioned earlier, many of the malware
samples fed into CHATTER belong to customers and require reverse
engineering, deep analysis, and manual inspection. To that end, this
process provides a natural venue for obtaining features, labels, and

training sets for CHATTER.

4.3 Other Applications
While the main application we used in CHATTER relies on trans-

forming behavioral profiles into documents and using them for un-
derstanding the behavior of malware utilizing n-gram techniques,
the concept is generic and can be applied to a wide variety of appli-
cations. In the following we identify several potential applications
which can benefit from CHATTER:

• Process-based DDoS detection: while our system studies a
specific DDoS malware family, our system cab be general-
ized to understand any process-based DDoS attack by ob-
serving traffic on the wire, generating sufficient artifacts that
can be used to derive features and footprint or attribute such
attack.

• Advanced persistent threats: often time, such threats (process-
based) result in a lot of artifacts that are generated over a
long period of time where the literature systems can be less
effective in characterizing them. One potential application in
characterizing them is to rely on the inter-event patterns they
generate, using CHATTER.

5. RELATED WORK
There has been plenty of work in the recent literature on the

use of machine learning algorithms for classifying malware sam-
ples [6,10,21,34,37–40,46,47]. These works are classified into two
categories: signature based and behavior based techniques. Our
work belongs to the second category of these works, where we used
several behavior characteristics as features to classify the Zeus mal-
ware sample. Related to our work is the literature in [34,39,40,52].
In [34], the authors use behavior graphs matching to identify and
classify families of malware samples, at high cost of graph opera-
tions and generation. In [39, 40], the authors follow a similar line
of thoughts for extracting features, and use SVM for classifying
samples, but fall short in relying on a single algorithm and using
AV-generated labels (despite their pitfalls).



The work of Bailey et al in [6] motivated to many of the related
works on malware classification using behavior. Our work is dif-
ferent from their work in two aspects. First, although we share
similarity with their high level grouping of features, our system re-
lies on the order of events, which exposes richer behavior. Finally,
we use highly-accurate analyst-vetted labels for evaluation, where
they use heuristics over AV-returned labels.

While we don’t particularly use memory signatures for the oper-
ation of CHATTER, a great potential can be seen in utilizing those
features the same way CHATTER uses the network features. Re-
lated to that, Willems et al. introduced CWXDetector [48] which
detects illegitimate code by analyzing memory sections that cause
memory faults—artificially triggered by marking those section non-
executable. The work can be integrated into our system, although
at cost: the mechanism is intrusive to other running processes in
the memory. Our current system, on the other hand, does not re-
quire any memory modifications. Kolbitsch et al. [22] introduce
Inspector, which is used for automatically reverse engineering and
highlighting codes responsible for “interesting” behaviors by mal-
ware. Related to that, Sharif et al. proposed to understand code-
level behavior by reverse-engineering code emulators [43]. Those
are examples among other works in the literature. However, all of
those works do not generate malware artifacts other than memory-
related signatures, which by themselves have limited insight into
characterizing generic malware samples.

Related to our use of network features is the line of research on
traffic analysis for malware and botnet detection, reported in [14–
17, 20] and for the particular families of malware that use fast flux,
which is reported in [19, 32]. Related to our use of the DNS fea-
tures for malware analysis are the works in [4, 5, 9]. None of those
studies are concerned by behavior-based analysis and classification
of malware beyond the use of remotely collected network features
for inferring malicious activities and intent. Thus, although they
share similarity with our work in purpose, they are different from
our work in the utilized techniques.

Broadly related to our work are systems for overcoming malware
evasion techniques. Improving on malware detection, analysis and
classification have been investigated as well in several works in
the literature. In [25], K-Tracer is introduced for extracting ker-
nel malware behavior and mitigating the circumvention of loggers
deployed in the kernel by rootkits. In [35], MacBoost is used for
prioritizing malware samples by determining benign (or less se-
vere) from malicious piece of codes. A system to prevent drive-by-
malware based on behavior, named BLADE, is introduced in [27].
A nicely written survey on such systems and tools is in [12].

Using n-grams for malware classification is not new. However,
the work in the literature has looked at extracting features from
executables (e.g., sequence of bytes in the binary files [40]) or
streams of communication traffic [49], but not sequence of events
happening while executing a malware sample. Examples of such
works include [23, 35, 42, 49]. Of particular interest is the con-
current work in [49], which derives features of network contents
based on the contents, rather than well-understood behavioral arti-
facts and events. Using network artifacts for identifying malicious
activities, like botnets, is investigated in [15–17, 36, 45]. Further
applications of characterizing malicious domain names using net-
work traffic and artifacts (DNS queries, among others) are reported
in [8, 9, 37]

The basic idea of using the order of events in characterizing
processes is first explored by Forrest et al. in their seminal work
in [13], where it is shown that a process-level intrusion can be de-
tected using the order in which system calls happen as a sequence.
However, the work differs from our work in three aspects 1) it is
concerned with detection rather than classification, 2) it uses sys-
tem calls rather than networks features, 3) it use a whole sequence
as a single feature that is easy to manipulate and break, rather than
subsequences (as in n-grams) and their frequency.

Finally, the use of machine learning techniques to automate clas-
sification of behavior of codes and traffic are heavily studied in the
literature. The reader can refer to recent surveys in [44] and [41].

6. CONCLUSION
Motivating by the need for deriving new and easy-to-obtain fea-

tures, we introduced CHATTER, a behavior-based malware classi-
fication system. CHATTER uses behavioral artifacts generated by
malware samples at their runtime and characterizes their use of one
or more group artifacts. At its core, CHATTER considers the order
in which events in the behavior of a malware happen. We notice
that order-based features can be captured using the n-gram tech-
nique widely used in information retrieval. With its many advan-
tages advocated in section 2, and using three malware families of
various characteristics, CHATTER is shown to provide a reasonable
accuracy in classifying malware samples into their own family.

This paper only scratches the surface of order-based features for
classification of malware samples, and leaves us with a lot of fu-
ture work. Addressing the limitations outlined in section 4.2 is
an immediate future work. In particular, we would like to ex-
plore partial-order based features and their use for fingerprinting
and classifying malware samples. Those features would address
noised features (intentionally, by a malware, or unintentionally—
due to mixed signals in an on-the-wire deployment). Realizing the
applications listed in section 4.3 using the same technique outlined
and used in CHATTER is yet another future work that we would like
to explore.

7. REFERENCES
[1] —. Yara Project: A malware identification and classification

tool. http://bit.ly/3hbs3d, May 2013.
[2] E. Alpaydin. Introduction to machine learning. MIT press,

2004.
[3] D. Alperovitch. Revealed: Operation shady rat.
[4] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and

N. Feamster. Building a dynamic reputation system for dns.
In USENIX Sec. Symposium, 2010.

[5] M. Antonakakis, R. Perdisci, W. Lee, N. V. II, and D. Dagon.
Detecting malware domains at the upper dns hierarchy. In
USENIX Sec. Symposium, 2011.

[6] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian,
and J. Nazario. Automated classification and analysis of
internet malware. In RAID, 2007.

[7] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and
E. Kirda. Scalable, behavior-based malware clustering. In
NDSS, 2009.

[8] L. Bilge, D. Balzarotti, W. K. Robertson, E. Kirda, and
C. Kruegel. Disclosure: detecting botnet command and
control servers through large-scale netflow analysis. In
ACSAC, 2012.

[9] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure:
Finding malicious domains using passive dns analysis. In
NDSS, 2011.

[10] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha,
A. Youssef, M. Debbabi, and L. Wang. On the analysis of the
zeus botnet crimeware toolkit. In Privacy Security and Trust,
2010.

[11] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and
D. Song. Hi-cfg: Construction by binary analysis and
application to attack polymorphism. In J. Crampton,
S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of
Lecture Notes in Computer Science, pages 164–181.
Springer, 2013.

[12] M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on
automated dynamic malware-analysis techniques and tools.

http://bit.ly/3hbs3d


ACM Comput. Surv., 44(2):6:1–6:42, Mar. 2008.
[13] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.

A sense of self for unix processes. In Security and Privacy,
1996. Proceedings., 1996 IEEE Symposium on, pages
120–128. IEEE, 1996.

[14] C. Gorecki, F. C. Freiling, M. Kührer, and T. Holz.
Trumanbox: Improving dynamic malware analysis by
emulating the internet. In SSS, 2011.

[15] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer:
clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In USENIX Sec.
Symposium, 2008.

[16] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
Bothunter: Detecting malware infection through ids-driven
dialog correlation. In USENIX Sec. Symposium, 2007.

[17] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet
command and control channels in network traffic. In NDSS,
2008.

[18] J. Halliday. Hackers attack european governments using
’miniduke’ malware. http://bit.ly/16bVldV,
February 2013.

[19] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling. Measuring
and detecting fast-flux service networks. In NDSS, 2008.

[20] G. Jacob, R. Hund, C. Kruegel, and T. Holz. Jackstraws:
Picking command and control connections from bot traffic.
In USENIX Sec. Symposium, 2011.

[21] J. Kinable and O. Kostakis. Malware classification based on
call graph clustering. Journal in computer virology,
7(4):233–245, 2011.

[22] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspector
gadget: Automated extraction of proprietary gadgets from
malware binaries. In IEEE Sec. and Privacy, 2010.

[23] J. Z. Kolter and M. A. Maloof. Learning to detect and
classify malicious executables in the wild. The Journal of
Machine Learning Research, 7:2721–2744, 2006.

[24] D. Kong and G. Yan. Discriminant malware distance
learning on structural information for automated malware
classification,. In 19th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2013.

[25] A. Lanzi, M. I. Sharif, and W. Lee. K-tracer: A system for
extracting kernel malware behavior. In NDSS, 2009.

[26] M. Ligh, S. Adair, B. Hartstein, and M. Richard. Malware
Analyst’s Cookbook and DVD: Tools and Techniques for
Fighting Malicious Code. Wiley Publishing, 2010.

[27] L. Lu, V. Yegneswaran, P. Porras, and W. Lee. Blade: an
attack-agnostic approach for preventing drive-by malware
infections. In ACM CCS, pages 440–450, 2010.

[28] A. Mohaisen and O. Alrawi. AMAL: High-fidelity,
behavior-based automated malware analysis and
classification. Technical report, Verisign Labs, 2013.

[29] A. Mohaisen and O. Alrawi. Unveiling zeus: automated
classification of malware samples. In WWW (Companion
Volume), pages 829–832, 2013.

[30] A. Mohaisen, O. Alrawi, M. Larson, and D. McPherson.
Towards a methodical evaluation of antivirus scans and
labels. In The 14th International Workshop on Information
Security Applications (WISA2013). Springer, 2013.

[31] A. Mohaisen, O. Alrawi, A. G. West, and A. Mankin.
Babble: Identifying malware by its dialects. In 2013 IEEE
Conference on Communications and Network Security
(CNS), pages 407–408. IEEE, 2013.

[32] J. Nazario and T. Holz. As the net churns: Fast-flux botnet
observations. In MALWARE, pages 24–31, 2008.

[33] New York Times. Nissan is latest company to get hacked.
http://nyti.ms/Jm52zb, April 2013.

[34] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel. Fast
malware classification by automated behavioral graph
matching. In CSIIR Workshop. ACM, 2010.

[35] R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting
scalability in malware collection and analysis using
statistical classification of executables. In ACSAC, 2008.

[36] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering
of http-based malware and signature generation using
malicious network traces. In USENIX NSDI, 2010.

[37] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
N. Modadugu, et al. The ghost in the browser analysis of
web-based malware. In USENIX HotBots, 2007.

[38] M. Ramilli and M. Bishop. Multi-stage delivery of malware.
In MALWARE, 2010.

[39] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov.
Learning and classification of malware behavior. In
Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 108–125, 2008.

[40] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic
analysis of malware behavior using machine learning.
Journal of Computer Security, 19(4):639–668, 2011.

[41] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. van Steen. Prudent practices
for designing malware experiments: Status quo and outlook.
In IEEE Sec. and Privacy, 2012.

[42] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo. Data
mining methods for detection of new malicious executables.
In Security and Privacy, 2001. S&P 2001. Proceedings. 2001
IEEE Symposium on, pages 38–49. IEEE, 2001.

[43] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. Automatic
reverse engineering of malware emulators. In IEEE Sec. and
Privacy, 2009.

[44] R. Sommer and V. Paxson. Outside the closed world: On
using machine learning for network intrusion detection. In
IEEE Symposium on Security and Privacy, 2010.

[45] W. T. Strayer, D. E. Lapsley, R. Walsh, and C. Livadas.
Botnet detection based on network behavior. In Botnet
Detection, 2008.

[46] R. Tian, L. Batten, R. Islam, and S. Versteeg. An automated
classification system based on the strings of trojan and virus
families. In IEEE MALWARE, 2009.

[47] R. Tian, L. Batten, and S. Versteeg. Function length as a tool
for malware classification. In IEEE MALWARE, 2008.

[48] C. Willems, F. C. Freiling, and T. Holz. Using memory
management to detect and extract illegitimate code for
malware analysis. In ACSAC, 2012.

[49] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A close
look on n-grams in intrusion detection: anomaly detection
vs. classification. In 2013 ACM workshop on Artificial
intelligence and security, pages 67–76. ACM, 2013.

[50] G. Yan, N. Brown, and D. Kong. Exploring discriminatory
features for automated malware classification. In 10th
Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2013.

[51] H. Yin, D. X. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. In ACM Conference on
Computer and Communications Security, 2007.

[52] H. Zhao, M. Xu, N. Zheng, J. Yao, and Q. Ho. Malicious
executables classification based on behavioral factor
analysis. In IC4E, 2010.

http://bit.ly/16bVldV
http://nyti.ms/Jm52zb

	Introduction
	System and Design
	Design Goals and Requirements
	System Workflow
	Sandboxed Execution and Artifacts Collection
	Behavioral Documents and Their Extraction
	The n-gram Features Extraction
	The Machine Learning Component


	Evaluation
	Datasets and Ground Truth
	Datasets
	Establishing A Ground Truth

	Features and Feature Selection
	Evaluation Metrics and Procedures
	Machine Learning Algorithms
	Results

	Discussion
	Meeting Design Requirements
	Limitations
	Other Applications

	Related Work
	Conclusion
	References

