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ABSTRACT

Malware family classification is an age old problem that many Anti-

Virus (AV) companies have tackled. There are two common tech-

niques used for classification, signature based and behavior based.

Signature based classification uses a common sequence of bytes

that appears in the binary code to identify and detect a family of

malware. Behavior based classification uses artifacts created by

malware during execution for identification. In this paper we report

on a unique dataset we obtained from our operations and classi-

fied using several machine learning techniques using the behavior-

based approach. Our main class of malware we are interested in

classifying is the popular Zeus malware. For its classification we

identify 65 features that are unique and robust for identifying mal-

ware families. We show that artifacts like file system, registry, and

network features can be used to identify distinct malware families

with high accuracy—in some cases as high as 95%.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General – Secu-

rity and Protection; C.4 [Performance of Systems]: Measurement

studies
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1. INTRODUCTION
Malware family classification is age old problem that many in-

dustrial and academic efforts have tackled [16, 3, 8, 10, 17, 13,

18, 6, 11]. There are two common techniques used for classifi-

cation, signature based [14, 17, 6] and behavior based [8, 10, 13,

18]. Signature based classification is based on detecting a family of

malware by using a common sequence of bytes that appear in the

binary code. Behavior based classification is based on detecting a

family of malware based on the artifacts the malware creates dur-

ing execution. This paper will discuss a behavior based approach

to classification of a single malware family, the Zeus banking Tro-

jan [15, 12, 4], using several machine learning algorithms.

In this paper, the main malware family that we study is the Zeus

Banking Trojan. The Zeus banking Trojan is a famous banking Tro-

jan that is used by cyber criminals to run a botnet to steal money,

credentials, and system resources from the infected victims. The

Zeus source code was leaked in 2011 and since than there has been

numerous variants that have surfaced [7]. Although the variants
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have new add-on features that are not found in the original Zeus

banking Trojan, they all exhibit very similar behavior. Notable fea-

tures in the new variants of Zeus include bitcoin mining, peer-to-

peer command and control infrastructure, and added layers of en-

cryption to the configuration file.

The Zeus malware infects the system by writing a copy of it-

self to the APPDATA folder using a randomly generated file name.

The stolen data is stored under the same directory, APPDATA, en-

crypted [9]. When Zeus sends the stolen data to the command and

control server it deletes the local copy. Upon infection, Zeus injects

into explorer.exe process and other running system processes to run

out of. Zeus runs its main thread out of explorer.exe and commu-

nicates to the command and control server through explorer. New

variants using peer-2-peer continue to run out of explorer.exe pro-

cess but does not make any HTTP request. The Zeus banking Tro-

jan hooks several important Windows APIs to intercept data being

sent from the browser and to modify pages seen by the victim. For

example Zeus is capable of adding fields in web forms to collect

additional information from the victim when visiting banking site.

After Zeus infects a system and establishes a connection with

the command-and-control server, Zeus will download an updated

version of the configuration file that tells the bot what sites to tar-

get. The configuration file use to be stored in the same APPDATA
directory as the rest of the files. The recent variants of Zeus have

changed the storage area and storage method of the configuration to

protected from being discovered. We have observed with the new

variants of Zeus that the configuration file is encrypted and stored

in the registry under a random key name. The configuration file is

an important aspect of the Zeus banking Trojan and can reveal an

abundant amount of information about the Zeus campaign.

The configuration file can contain a list of backup command-and-

control servers, link to an updated version of Zeus, list of targeted

websites, and list of HTML and JavaScript to be injected in the

targeted websites. The configuration file information is important

because system administrators can block access to all domains used

for backup, targeted entities can be notified about a particular cam-

paign effecting their users, and security researchers can track the

infrastructure used by the attackers.

The reason Zeus is an important piece of malware is because it

is the most prevalent banking Trojan in the wild [5]. Zeus accounts

for most cyber crime targeting banks and small businesses, which

calls for further investigation on identifying malware samples that

belong to this family and exhibit new unique behaviors that we did

not see before. To this end, this work is dedicated to unveiling Zeus;

we identify a set of features in a large set of malware samples and

use them automatically understand this important family.

To this end, the contribution of this paper is as follows. First, we

report on our effort characterizing malware samples by automati-



cally analyzing binary codes in isolated environments using one of

our products, named automal, and further discuss a small dataset

obtained from this product. We identify a set of features that are

representative to families of malware, including Zeus. Second, we

use these features to automatically classify the different malware

samples into families, using various machine learning algorithms,

and report on both the efficiency and accuracy of the classification.

The organization of the paper is as follows. In §2, we discuss

the preliminaries of this study. In §3, we describe the dataset used

in the study. In §4, we report on the experiments, and highlight

the accuracy and error when using different machine learning algo-

rithms, some recommendations and observations. In §5 we review

some of the related works followed by the future work in §6.

2. PRELIMINARIES
In this study we used five classification algorithms to understand

their capability in classifying different families of malware sam-

ples. In the following we review these algorithms.

• Support Vector Classification: (also known as support vec-

tor machine; SVM) is a supervised deterministic binary clas-

sification algorithm that assigns a label to input determin-

ing which of two classes of the output it belongs to. Given

a training set of samples (i.e., examples), each of which is

marked as belonging to one of two categories, the algorithm

builds a model that assigns each of the samples into one cat-

egory or the other. The algorithm maps different samples

as points in the vector space with a clear boundary between

them, then the algorithm maps samples to the space, and as-

sociate them with other samples that are closer to them. The

formal description of the algorithm can be found here [2]. In

the SVM algorithm, we use the L2 regularization (because

of the particular settings of our dataset and the number of

features) and L2 loss — for more details see section 4.

• Logistic Regression: [2] same as the SVM, logistic regres-

sion allows us to predict an outcome, such as label, from a

set of variables. The goal of logistic regression is to correctly

predict the category of outcome for individual cases using the

best model. For that, a model is created that includes all pre-

dictor features that are useful in predicting the needed label.

In our experiments, we use both L1 regularization and L2

regularization — In this study, we use both to identify the

better one for the given dataset size and set of features.

• Classification Tree: [2] (also known as decision trees, or re-

gression trees) is a model used for predicting the label by

mapping observations about the sample to the conclusions

about its target value. In the training part, the samples are

used to create a model in which a boundary is created for

each label based on the features. In the test part of the algo-

rithm, the decision model created earlier is used for identify-

ing which label is associated with the sample based on how

it is fitted on the classification tree.

• K-Nearest Neighbor [2] is a simple machine learning algo-

rithm used for classifying samples based on the closest train-

ing samples to them in the training feature space. Because

the algorithm is used for multiple classes, and our end goal

is a binary classification of two classes, we limit the size of

each cluster (class) discovered by the algorithm into the ideal

size of each class in the training algorithm (in such case, we

use equal size of samples in the training part; see details in

the experiments).

In the rest of this study we rely on an off-the-shelf implementation

of the aforementioned algorithms. We use mlpy [1] (stands for Ma-

chine Learning Python), which is a python toolkit that implements

several machine learning algorithms.

3. DATASET
A fundamental part in our contribution in this work is the dataset,

the set of features included in the data, the way we obtain the

dataset and the features, and the way we use for establishing a base-

line for the ground truth by manual classification. In the following,

we elaborate on the background of the dataset, the method used for

extracting the raw features used for the classification, the method

used for establishing a ground truth, and the baseline we use in our

experiments, including the testing dataset.

3.1 Background
In this section we recall some of the background we mentioned

in section 1 about the Zeus dataset. For our data set we used Zeus

Banking Trojan. As we mentioned earlier, the Zeus banking Trojan

is a famous banking Trojan that is used by cyber criminals to run

a botnet to steal money, credentials, and system resources from the

infected victims. The Zeus malware infects the system by writing

a copy of itself to the APPDATA folder using a randomly gener-

ated file name. The stolen data is stored under the same directory

encrypted in the APPDATA directory. In the following, we present

the method used for extracting features and artifacts that are repre-

sentative to the malware sample.

3.2 Raw and Vector Features Extraction
The data is a set of 1,980 sample of the Zeus Banking Trojan.

We ran these 1,980 samples through our automated malware anal-

ysis system auto-mal. The system auto-mal is a virtual machine

(VM) based system that is used to run samples of malware and cap-

ture behavior characteristics of that sample. The system enables

us to set a run-time for each sample that long enough to capture

enough artifacts about the sample; in our experiments we set the

time into 1 minutes (upon several trials, we realized that 1 minute

is enough for characterizing common samples). The auto-mal sys-

tem uses several tools for capturing and characterizing networking

traffic (IP address, port numbers, protocol types, and others — for

details see Table 1). Also, the auto-mal system uses tools, like

sluethkit, which is used for file system and registry artifacts. In

total, our system captures file system activities, registry activities,

and network activities. The malware activity artifacts are logged to

a MySQL database. We call those artifacts as raw features.

From the raw features, we obtain a feature vector for each mal-

ware sample. Most of the features consist of counts and normalized

data sizes that are used as features. For sizes, we consider the quar-

tile counts (e.g., how many of the specified artifacts have a size that

falls into the specified quartile of size generated by that malware

sample; i.e., for the 1st, 2nd, 3rd, and 4th quartiles in relation with

the file, for example, with the largest size). We have 65 features in

total most of which are network features, as shown in Table 1.

3.3 Sample Labeling
The Zeus Banking Trojan samples have been identified by hand

and collected over time by analysts—This process can be time-

consuming. At average, a previously unseen malware sample (not

necessarily Zeus) can take more than 10 hours to manually charac-

terize by experts. The data sources are from various AV vendors

that we have partnered with for sharing malware samples. The

malware feed is delivered with no AV signatures associated with

samples. We run Yara signatures on the malware feed to identify

malware of interest that we can feed into our automated malware

analysis system.



Table 1: Features used in classifying malware samples.

Class features

File system created, modified, deleted, size (quartiles),

unique extensions, count of files under common

paths

Registry created keys, modified keys, deleted keys, count

of keys with certain type

Network see below for each sub-class

IP and port unique dest IP, certain ports (18 ports)

Connections TCP, UDP, RAW

Request type POST, GET, HEAD

Response type response codes (200s through 500s)

Size request (quartiles), reply (quartiles)

DNS MX, NS, A records, PTR, SOA, CNAME

We also have an AV scanner appliance that scans each sample

going through our automated malware analysis system with 20 anti-

virus scanners. This helps us identify if other vendors think a sam-

ple is Zeus, Zbot, or a different family of malware. Our automated

malware analysis system has a memory forensics component that

allows us to run Yara signatures on volatile memory to identify a

specific family of malware based on strings in memory and byte

sequences known for a specific malware family. In the rest of this

paper, we did not use memory features, and leave using them as a

future work.

3.4 Baseline, Training, and Test Data
The methods mentioned above are used in conjunction to iden-

tify and verify that each sample is of the same family and that we

can use the behavior of these samples as features for the machine

learning algorithms. The Zeus data set is split up into 2 different

data sets one for learning and one for testing. The learning data set

contains 1001 samples of Zeus and 1000 samples of other malware

that is picked at random from our malware database collection. The

testing set contains 979 samples of Zeus and 1000 samples of non-

Zeus malware and that is not found in the learning data set. Notice

that the number of samples we use in this study is only to illus-

trate the idea, and is way smaller than the total number of samples

available to us. Classifying all samples is left as a future work.

4. EXPERIMENTS AND RESULTS
In this section we discuss the experiments and the results of this

study. Before going into further details, we outline the settings of

the experiments and the evaluation metric.

4.1 Settings and Error Measures
We ran the learning set, call it set A, through five different classi-

fication algorithms and tested the prediction on the testing set, call

it set B. The family of linear classification had a cost of constraints

violation set to 0.01. For the Class Tree classifier the minimum

number of cases required to split a leaf is set to 5. For the KNN

classifier the number of nearest neighbors are set to 980 (thus the

number of the classes we have is 2 for the kNN classifier).

To evaluate and compare the different algorithms we use the false

positive and false negative measures. The false positive error (false

alarm; for the class label Zeus, for example) measures the number

of samples marked as Zeus, while they are in reality not Zeus. On

the other hand, the false negative error (for the Zeus family) mea-

sures the number of samples that are marked as non-Zeus, while

they are in fact Zeus. Given that we are interested equally in both

classes (Zeus and non-Zeus), and that the number of samples that

Table 2: False positive and false negative when running the dif-

ferent classification algorithms.

Algorithm +/− (Zeus) +/− (Non-Zeus)

SVM 6.84%/4.29% 6.70%/4.20%

Logistic Reg. (L1) 11.03%/1.43% 10.81%/1.40%

Logistic Reg. (L2) 27.06%/2.55% 26.52%/2.50%

Decision Trees 4.70%/22.98% 22.52%/4.60%

KNN 10.21%/10.93% 10.71%/10.01%

are Zeus are not equal to the number of non-Zeus samples, we gen-

erate the error measures for both of them as percents (normalized

by the total number of samples in each class).

4.2 Results
Using the settings above, we run these algorithms on our dataset,

and computed the error measures (detailed in the previous section)

normalized by the number of samples in each class. The results are

shown in Table 2. From those results, we observe the following

(we verify some of those in the second experiment). First of all, we

notice that the L1 regularization option when used with the logistic

regression, is best suited for our dataset and the number of features

we have to give the best results represented by the lowest error

margin for both the Zeus and non-Zeus samples.

Second of all, we notice that the support vector classifier pro-

vides the best results among all for the combined false positive and

false negative measures, by identifying about 95% of the Zeus sam-

ples correctly and missing only around 5% of the samples at aver-

age, and by adding another 5% misclassified samples to the final

Zeus results. For the class of interest, the Zeus malware samples,

while the decision trees algorithm provides the best (overall) false

positive results, it provides a very high false negative (identifying

samples as non-Zeus, while they are in reality Zeus samples) thus

limiting its usefulness to the main purpose of the paper—correctly

and accurately identifying Zeus samples.

Finally, and while the false positive of the logistic regression

(with L2 for regularization) is very large (around 27% for both

classes; perhaps because the number of the samples we have in

relation with the number of the features is limited), we notice that

the false negative provided by the algorithm is among the lowest in

the study (about 2.5%, yet higher than the L1 regularization case),

which sheds light on its potential for identifying the class of in-

terest, and perhaps limit its drawback by combining it with other

algorithms that perform well for that class and that error measure.

One challenging problem when using machine learning tech-

niques for classifying data, particularly when using supervised learn-

ing techniques, is the choice of the training set. Starting with a well

classified dataset (with respect to the classification features) may

give nice results, or even starting with a poorly classified dataset

might by misleading by showing superiority of an algorithm over

another due to that fact, while in reality altering the initial learning

dataset may greatly alter the findings. To understand how our re-

sults are robust to the initial training set, we repeat the experiment

by flipping the test and training datasets. We flipped the sets and

made the B dataset as a learning set and the A dataset as a testing

set, and ran the five different classification algorithms again to get

the results shown in Table 3.

In this experiment, we confirm the following (among the initial

observations we made). First, we notice that the L2 regularization

still performs worse than the L1 regularization with the logistic re-

gression, establishing that the L1 regularization on the logistic re-

gression is well suited for our dataset for the reasons listed earlier.



Table 3: False positive and false negative when running the dif-

ferent classification algorithms.

Algorithm +/− (Zeus) +/− (Non-Zeus)

SVM 8.39%/8.39% 8.39%/8.39%

Logistic Reg. (L1) 7.29%/8.29% 8.29%/7.29%

Logistic Reg. (L2) 9.69%/11.00% 11.00%/9.69%

Decision Trees 4.90%/12.79% 12.79%/4.90%

KNN 12.29%/12.29% 12.29%/12.29%

Second, we observe that the (combined) performance of the SVM

is still the best among all algorithms we used, which is perhaps due

to the nature of our dataset: SVM performs well when the dataset

consists of two clear classes, and that happens to be the case of our

dataset. Third, unlike in the previous experiment, where the per-

formance of the decision trees indicates a limited benefits of it, the

false negative (of the Zeus class) when using the decision tree is

greatly less (about 10%) than in the previous experiment. Further-

more, the false positive is still same as in the previous experiment.

This final observation shows how critical it is to start with a repre-

sentative training set for the given classification algorithm.

Fourth, we observe the symmetry in the false positive and false

negative among the two classes and the different algorithms, which

happens as a result of the equal size of samples that belong to each

class in the testing dataset. Finally, we notice a limited difference in

the results of the kNN classification algorithm, which is among the

easiest to implement and run, indicating that, even when starting

from a biased (or less representative training set), the kNN algo-

rithm still provides reasonable results.

5. RELATED WORK
There has been plenty of work in the recent literature on the

use of machine learning algorithms for classifying malware sam-

ples [16, 3, 14, 10, 17, 13, 6, 12, 11]. These works are broadly

classified into two categories: signature based and behavior based

techniques. Our work belong to the second category of these works,

where we used several behavior characteristics as features to clas-

sify the Zeus malware sample. Related to work are the works

in [14, 8, 10, 13, 18]. In [10], the authors use behavior graphs

matching to identify and classify families of malware samples. In [13],

the authors follow a similar line of thoughts like ours for extract-

ing features, and use SVM for classifying samples. Their ground

truth relies on anti-virus reported classification which is mostly

signature-based, and they do not include manual classification like

in our case. Furthermore, the algorithms used for classification in-

clude only the SVM, which we tried along with other algorithms.

Their dataset does not include any Zeus samples, and thus does not

characterize this important malware family. The same work is ex-

tended in [14]. Our work is different from the prior literature in two

aspects. First, we limit our attention to understanding and classify-

ing the Zeus malware sample, which is, to the best of our knowl-

edge is not classified before. Second, to that end, our problem is

limited in nature; we only use techniques that are designed for 2-

classes classification problems, thus our error rates are smaller than

those reported in the literature for multi-class classification.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented preliminary results on classify-

ing Zeus, a popular malware family, using different machine learn-

ing algorithms. Much of the work is to be seen in the near future.

We are currently collecting a larger set of Zeus malware to be able

to run the algorithms on a larger set. We are proactivily identifying

Zeus banking Trojans and creating profiles for each new sample

that comes in so we have a larger data set. We are also combing

through our historical data to pull out samples that we might have

missed and variants that might exhibited similar behavior but not

exactly the same. We would like to run clustering algorithms on our

entire data base of malware to break the samples into clusters then

apply the memory signatures discussed earlier to label each cluster

and identify sub-families within each of the classes. Finally, in the

future we would like to combine different classification algorithms

with different weights to improve the classifications results.
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